.. _cn_api_fluid_ParamAttr: ParamAttr ------------------------------- .. py:class:: paddle.fluid.ParamAttr(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None, do_model_average=False) 该类代表了参数的各种属性。 为了使神经网络训练过程更加流畅,用户可以根据需要调整参数属性。比如learning rate(学习率), regularization(正则化), trainable(可训练性), do_model_average(平均化模型)和参数初始化方法. 参数: - **name** (str) – 参数名。默认为None。 - **initializer** (Initializer) – 初始化该参数的方法。 默认为None - **learning_rate** (float) – 参数的学习率。计算方法为 :math:`global\_lr*parameter\_lr∗scheduler\_factor` 。 默认为1.0 - **regularizer** (WeightDecayRegularizer) – 正则因子. 默认为None - **trainable** (bool) – 该参数是否可训练。默认为True - **gradient_clip** (BaseGradientClipAttr) – 减少参数梯度的方法。默认为None - **do_model_average** (bool) – 该参数是否服从模型平均值。默认为False **代码示例** .. code-block:: python import paddle.fluid as fluid w_param_attrs = fluid.ParamAttr(name="fc_weight", learning_rate=0.5, regularizer=fluid.regularizer.L2Decay(1.0), trainable=True) x = fluid.layers.data(name='X', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)