.. _cn_api_fluid_regularizer_L2Decay: L2Decay ------------------------------- .. py:attribute:: paddle.fluid.regularizer.L2Decay L2Decay实现L2权重衰减正则化,用于模型训练,有助于防止模型对训练数据过拟合。 该类生成的实例对象,需要设置在 :ref:`cn_api_fluid_ParamAttr` 或者 ``optimizer`` (例如 :ref:`cn_api_fluid_optimizer_SGDOptimizer` )中,在 ``ParamAttr`` 中设置时, 只对该网络层中的参数生效;在 ``optimizer`` 中设置时,会对所有的参数生效;如果同时设置, 在 ``ParamAttr`` 中设置的优先级会高于在 ``optimizer`` 中设置。 具体实现中,L2权重衰减正则化的计算公式如下: .. math:: \\L2WeightDecay=reg\_coeff*parameter\\ 参数: - **regularization_coeff** (float) – 正则化系数,默认值为0.0。 **代码示例1** .. code-block:: python import paddle.fluid as fluid main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = fluid.layers.fc(input=data, size=128, act='relu') prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) avg_loss = fluid.layers.mean(loss) optimizer = fluid.optimizer.Adagrad( learning_rate=1e-4, regularization=fluid.regularizer.L2Decay( regularization_coeff=0.1)) optimizer.minimize(avg_loss) **代码示例2** .. code-block:: python # 在 ParamAttr 和 optimizer 中同时设置正则化 import paddle.fluid as fluid l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1) l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1) x = fluid.layers.uniform_random([3,4]) # 在ParamAttr中设置L1正则化 w_param = fluid.ParamAttr(regularizer=l1) hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0 hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0 predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0 avg_loss = fluid.layers.mean(predict) # 在optimizer中设置L2正则化 optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2) optimizer.minimize(avg_loss) # 将会打印出提示信息: # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already. # So, the Regularization of Optimizer will not take effect for these parameters!