.. _cn_api_fluid_optimizer_LarsMomentumOptimizer: LarsMomentumOptimizer ------------------------------- .. py:class:: paddle.fluid.optimizer.LarsMomentumOptimizer(learning_rate, momentum, lars_coeff=0.001, lars_weight_decay=0.0005, parameter_list=None, regularization=None, name=None) 该接口实现LARS支持的Momentum优化器 公式作如下更新: .. math:: & local\_learning\_rate = learning\_rate * lars\_coeff * \ \frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}\\ & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)\\ & param = param - velocity 参数: - **learning_rate** (float|Variable) - 学习率,用于参数更新。作为数据参数,可以是浮点型值或含有一个浮点型值的变量。 - **momentum** (float) - 动量因子。 - **parameter_list** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。 - **lars_coeff** (float,可选) - 定义LARS本地学习率的权重,默认值0.001。 - **lars_weight_decay** (float,可选) - 使用LARS进行衰减的权重衰减系数,默认值0.0005。 - **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、 :ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略; 如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。 - **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。 **代码示例** .. code-block:: python import paddle.fluid as fluid np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) out = fluid.layers.fc(inp, size=3) out = fluid.layers.reduce_sum(out) optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9) optimizer.minimize(out) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) exe.run( feed={"inp": np_inp}, fetch_list=[out.name]) .. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None) 通过更新parameter_list来添加操作,进而使损失最小化。 该算子相当于backward()和apply_gradients()功能的合体。 参数: - **loss** (Variable) – 需要最小化的损失值变量 - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program` - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter - **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的的集合,默认值为None - **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。 默认值为None,此时将不进行梯度裁剪。 返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值 返回类型: tuple .. py:method:: clear_gradients() **注意:** **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效** 清除需要优化的参数的梯度。 **代码示例** .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): value = np.arange(26).reshape(2, 13).astype("float32") a = fluid.dygraph.to_variable(value) linear = fluid.Linear(13, 5, dtype="float32") optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9, parameter_list=linear.parameters()) out = linear(a) out.backward() optimizer.minimize(out) optimizer.clear_gradients() .. py:method:: current_step_lr() **注意:** **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效** 获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。 返回:当前步骤的学习率。 返回类型:float **代码示例** .. code-block:: python import paddle.fluid as fluid import numpy as np # example1: LearningRateDecay is not used, return value is all the same with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters()) lr = adam.current_step_lr() print(lr) # 0.001 # example2: PiecewiseDecay is used, return the step learning rate with fluid.dygraph.guard(): inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = fluid.dygraph.nn.Linear(10, 10) inp = fluid.dygraph.to_variable(inp) out = linear(inp) loss = fluid.layers.reduce_mean(out) bd = [2, 4, 6, 8] value = [0.2, 0.4, 0.6, 0.8, 1.0] adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0), parameter_list=linear.parameters()) # first step: learning rate is 0.2 np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True # learning rate for different steps ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0] for i in range(12): adam.minimize(loss) lr = adam.current_step_lr() np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True