## 使用Paddle-TRT进行ResNet50图像分类样例
该文档为使用Paddle-TRT预测在ResNet50分类模型上的实践demo。如果您刚接触Paddle-TRT,推荐先访问[这里](https://paddle-inference.readthedocs.io/en/latest/optimize/paddle_trt.html)对Paddle-TRT有个初步认识。
本目录下,
- `trt_fp32_test.cc` 为使用Paddle-TRT进行FP32精度预测的样例程序源文件(程序中的输入为固定值,如果您有opencv或其他方式进行数据读取的需求,需要对程序进行一定的修改)。
- `trt_gen_calib_table_test.cc` 为离线量化校准中,产出量化校准表的样例程序源文件。
- `trt_int8_test.cc` 为使用Paddle-TRT进行Int8精度预测的样例程序源文件,根据传入布尔类型参数`use_calib`为`true`或`false`,可以进行加载离线量化校准表进行Int8预测,或加载PaddleSlim量化产出的Int8模型进行预测。
- `CMakeLists.txt` 为编译构建文件。
- `run_impl.sh` 包含了第三方库、预编译库的信息配置。
### 获取模型
首先,我们从下列链接下载所需模型:
[ResNet50 FP32模型](https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ResNet50.tar.gz)
[ResNet50 PaddleSlim量化模型](https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ResNet50_quant.tar.gz)
其中,FP32模型用于FP32精度预测,以及Int8离线校准预测;量化模型由模型压缩工具库PaddleSlim产出,PaddleSlim模型量化相关信息可以参考[这里](https://paddlepaddle.github.io/PaddleSlim/quick_start/quant_aware_tutorial.html)。使用Paddle-TRT进行Int8量化预测的介绍可以参考[这里](https://github.com/PaddlePaddle/Paddle-Inference-Demo/tree/master/docs/optimize/paddle_trt.rst#int8%E9%87%8F%E5%8C%96%E9%A2%84%E6%B5%8B)。
### 一、使用TRT FP32精度预测
1)**修改`run_impl.sh`**
打开`run_impl.sh`,我们对以下的几处信息进行修改:
```shell
# 选择使用fp32预测的demo
DEMO_NAME=trt_fp32_test
# 本节中,我们使用了TensorRT,需要将USE_TENSORRT打开
WITH_MKL=ON
WITH_GPU=ON
USE_TENSORRT=ON
# 配置预测库的根目录
LIB_DIR=/paddle/fluid_inference_install_dir
# 如果上述的WITH_GPU 或 USE_TENSORRT设为ON,请设置对应的CUDA, CUDNN, TENSORRT的路径。请注意CUDA和CUDNN需要设置到lib64一层,而TensorRT是设置到根目录一层
CUDNN_LIB=/paddle/nvidia-downloads/cudnn_v7.6_cuda10.1/lib64
CUDA_LIB=/paddle/nvidia-downloads/cuda-10.1/lib64
TENSORRT_ROOT=/paddle/nvidia-downloads/TensorRT-6.0.1.5
```
运行 `sh run_impl.sh`, 会在目录下产生build目录。
2) **运行样例**
```shell
# 进入build目录
cd build
# 运行样例
./trt_fp32_test --model_file=../ResNet50/model --params_file=../ResNet50/params
```
运行结束后,程序会将模型预测输出的前20个结果打印到屏幕,说明运行成功。
### 二、使用TRT Int8离线量化预测
使用TRT Int8离线量化预测分为两步:生成量化校准表,以及加载校准表执行Int8预测。需要注意的是TRT Int8离线量化预测使用的仍然是ResNet50 FP32 模型,是通过校准表中包含的量化scale在运行时将FP32转为Int8从而加速预测的。
#### 生成量化校准表
1)**修改`run_impl.sh`**
打开`run_impl.sh`,我们对以下的几处信息进行修改:
```shell
# 选择生成量化校准表的demo
DEMO_NAME=trt_gen_calib_table_test
# 本节中,我们使用了TensorRT,需要将USE_TENSORRT打开
WITH_MKL=ON
WITH_GPU=ON
USE_TENSORRT=ON
# 配置预测库的根目录
LIB_DIR=/paddle/fluid_inference_install_dir
# 如果上述的WITH_GPU 或 USE_TENSORRT设为ON,请设置对应的CUDA, CUDNN, TENSORRT的路径。请注意CUDA和CUDNN需要设置到lib64一层,而TensorRT是设置到根目录一层
CUDNN_LIB=/paddle/nvidia-downloads/cudnn_v7.6_cuda10.1/lib64
CUDA_LIB=/paddle/nvidia-downloads/cuda-10.1/lib64
TENSORRT_ROOT=/paddle/nvidia-downloads/TensorRT-6.0.1.5
```
运行 `sh run_impl.sh`, 会在目录下产生build目录。
2) **运行样例**
```shell
# 进入build目录
cd build
# 运行样例
./trt_gen_calib_table_test --model_file=../ResNet50/model --params_file=../ResNet50/params
```
运行结束后,模型文件夹`ResNet50`下的`_opt_cache`文件夹下会多出一个名字为`trt_calib_*`的文件,即校准表。
#### 加载校准表执行Int8预测
再次修改`run_impl.sh`,换成执行Int8预测的demo:
```shell
# 选择执行Int8预测的demo
DEMO_NAME=trt_int8_test
# 本节中,我们使用了TensorRT,需要将USE_TENSORRT打开
WITH_MKL=ON
WITH_GPU=ON
USE_TENSORRT=ON
# 配置预测库的根目录
LIB_DIR=/paddle/fluid_inference_install_dir
# 如果上述的WITH_GPU 或 USE_TENSORRT设为ON,请设置对应的CUDA, CUDNN, TENSORRT的路径。请注意CUDA和CUDNN需要设置到lib64一层,而TensorRT是设置到根目录一层
CUDNN_LIB=/paddle/nvidia-downloads/cudnn_v7.6_cuda10.1/lib64
CUDA_LIB=/paddle/nvidia-downloads/cuda-10.1/lib64
TENSORRT_ROOT=/paddle/nvidia-downloads/TensorRT-6.0.1.5
```
运行 `sh run_impl.sh`, 会在目录下产生build目录。
2) **运行样例**
```shell
# 进入build目录
cd build
# 运行样例,注意此处要将use_calib配置为true
./trt_int8_test --model_file=../ResNet50/model --params_file=../ResNet50/params --use_calib=true
```
运行结束后,程序会将模型预测输出的前20个结果打印到屏幕,说明运行成功。
**Note**
观察`trt_gen_calib_table_test`和`trt_int8_test`的代码可以发现,生成校准表和加载校准表进行Int8预测的TensorRT配置是相同的,都是
```c++
config.EnableTensorRtEngine(1 << 30, FLAGS_batch_size, 5, AnalysisConfig::Precision::kInt8, false, true /*use_calib*/);
```
Paddle-TRT判断是生成还是加载校准表的条件是模型目录下`_opt_cache`文件夹里是否有一个名字为`trt_calib_*`的与当前模型对应的校准表文件。在运行时为了防止混淆生成与加载过程,可以通过观察运行log来区分。
生成校准表的log:
```
I0623 08:40:49.386909 107053 tensorrt_engine_op.h:159] This process is generating calibration table for Paddle TRT int8...
I0623 08:40:49.387279 107057 tensorrt_engine_op.h:352] Prepare TRT engine (Optimize model structure, Select OP kernel etc). This process may cost a lot of time.
I0623 08:41:13.784473 107053 analysis_predictor.cc:791] Wait for calib threads done.
I0623 08:41:14.419198 107053 analysis_predictor.cc:793] Generating TRT Calibration table data, this may cost a lot of time...
```
加载校准表预测的log:
```
I0623 08:40:27.217701 107040 tensorrt_subgraph_pass.cc:258] RUN Paddle TRT int8 calibration mode...
I0623 08:40:27.217834 107040 tensorrt_subgraph_pass.cc:321] Prepare TRT engine (Optimize model structure, Select OP kernel etc). This process may cost a lot of time.
```
### 三、使用TRT 加载PaddleSlim Int8量化模型预测
这里,我们使用前面下载的ResNet50 PaddleSlim量化模型。与加载离线量化校准表执行Int8预测的区别是,PaddleSlim量化模型已经将scale保存在模型op的属性中,这里我们就不再需要校准表了,所以在运行样例时将`use_calib`配置为false。
1)**修改`run_impl.sh`**
打开`run_impl.sh`,我们对以下的几处信息进行修改:
```shell
# 选择使用Int8预测的demo
DEMO_NAME=trt_int8_test
# 本节中,我们使用了TensorRT,需要将USE_TENSORRT打开
WITH_MKL=ON
WITH_GPU=ON
USE_TENSORRT=ON
# 配置预测库的根目录
LIB_DIR=/paddle/fluid_inference_install_dir
# 如果上述的WITH_GPU 或 USE_TENSORRT设为ON,请设置对应的CUDA, CUDNN, TENSORRT的路径。请注意CUDA和CUDNN需要设置到lib64一层,而TensorRT是设置到根目录一层
CUDNN_LIB=/paddle/nvidia-downloads/cudnn_v7.6_cuda10.1/lib64
CUDA_LIB=/paddle/nvidia-downloads/cuda-10.1/lib64
TENSORRT_ROOT=/paddle/nvidia-downloads/TensorRT-6.0.1.5
```
运行 `sh run_impl.sh`, 会在目录下产生build目录。
2) **运行样例**
```shell
# 进入build目录
cd build
# 运行样例,注意此处要将use_calib配置为false
./trt_int8_test --model_file=../ResNet50_quant/model --params_file=../ResNet50_quant/params --use_calib=false
```
运行结束后,程序会将模型预测输出的前20个结果打印到屏幕,说明运行成功。
### 更多链接
- [Paddle Inference使用Quick Start!](https://paddle-inference.readthedocs.io/en/latest/introduction/quick_start.html)
- [Paddle Inference C++ Api使用](https://paddle-inference.readthedocs.io/en/latest/user_guides/cxx_api.html)
- [Paddle Inference Python Api使用](https://paddle-inference.readthedocs.io/en/latest/user_guides/inference_python_api.html)