.. _cn_api_fluid_optimizer_RMSPropOptimizer: RMSPropOptimizer ------------------------------- .. py:class:: paddle.fluid.optimizer.RMSPropOptimizer(learning_rate, rho=0.95, epsilon=1e-06, momentum=0.0, centered=False, regularization=None, name=None) 该接口实现均方根传播(RMSProp)法,是一种未发表的,自适应学习率的方法。原演示幻灯片中提出了RMSProp:[http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf]中的第29张。等式如下所示: .. math:: r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2\\ w & = w - \frac{\eta} {\sqrt{r(w,t) + \epsilon}} \nabla Q_{i}(w) 第一个等式计算每个权重平方梯度的移动平均值,然后将梯度除以 :math:`sqrtv(w,t)` 。 .. math:: r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2\\ v(w, t) & = \beta v(w, t-1) +\frac{\eta} {\sqrt{r(w,t) +\epsilon}} \nabla Q_{i}(w)\\ w & = w - v(w, t) 如果居中为真: .. math:: r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2\\ g(w, t) & = \rho g(w, t-1) + (1 -\rho)\nabla Q_{i}(w)\\ v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) - (g(w, t))^2 +\epsilon}} \nabla Q_{i}(w)\\ w & = w - v(w, t) 其中, :math:`ρ` 是超参数,典型值为0.9,0.95等。 :math:`beta` 是动量术语。 :math:`epsilon` 是一个平滑项,用于避免除零,通常设置在1e-4到1e-8的范围内。 参数: - **learning_rate** (float) - 全局学习率。 - **rho** (float,可选) - rho是等式中的 :math:`rho` ,默认值0.95。 - **epsilon** (float,可选) - 等式中的epsilon是平滑项,避免被零除,默认值1e-6。 - **momentum** (float,可选) - 方程中的β是动量项,默认值0.0。 - **centered** (bool,可选) - 如果为True,则通过梯度的估计方差,对梯度进行归一化;如果False,则由未centered的第二个moment归一化。将此设置为True有助于模型训练,但会消耗额外计算和内存资源。默认为False。 - **regularization** - 正则器项,如 ``fluid.regularizer.L2DecayRegularizer`` 。 - **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。 抛出异常: - ``ValueError`` -如果 ``learning_rate`` , ``rho`` , ``epsilon`` , ``momentum`` 为None。 **示例代码** .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1) rms_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) .. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None) 为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。 参数: - **loss** (Variable) – 需要最小化的损失值变量 - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program` - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter - **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None - **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None 返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值 返回类型: tuple **示例代码** .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1) rms_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)