.. _cn_api_tensor_div: div ------------------------------- .. py:function:: paddle.div(x, y, out=None, name=None) 该OP是逐元素相除算子,输入 ``x`` 与输入 ``y`` 逐元素相除,并将各个位置的输出元素保存到返回结果中。 等式是: .. math:: Out = X / Y - :math:`X` :多维Tensor。 - :math:`Y` :维度必须小于等于X维度的Tensor。 对于这个运算算子有2种情况: 1. :math:`Y` 的 ``shape`` 与 :math:`X` 相同。 2. :math:`Y` 的 ``shape`` 是 :math:`X` 的连续子序列。 对于情况2: 1. 用 :math:`Y` 匹配 :math:`X` 的形状(shape),其中 ``axis`` 是 :math:`Y` 在 :math:`X` 上的起始维度的位置。 2. 如果 ``axis`` 为-1(默认值),则 :math:`axis= rank(X)-rank(Y)` 。 3. 考虑到子序列, :math:`Y` 的大小为1的尾部维度将被忽略,例如shape(Y)=(2,1)=>(2)。 例如: .. code-block:: text shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2 shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0 参数: - **x** (Variable)- 多维 ``Tensor`` 或 ``LoDTensor`` 。数据类型为 ``float32`` 、 ``float64`` 、 ``int32`` 或 ``int64``。 - **y** (Variable)- 多维 ``Tensor`` 或 ``LoDTensor`` 。数据类型为 ``float32`` 、 ``float64`` 、 ``int32`` 或 ``int64``。 - **out** (Variable,可选)- 指定存储运算结果的 ``Tensor`` 。如果设置为None或者不设置,将创建新的 ``Tensor`` 存储运算结果,默认值为None。 - **name** (str,可选)- 输出的名字。默认值为None。该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` 。 返回: 多维 ``Tensor`` 或 ``LoDTensor`` , 维度和数据类型都与 ``x`` 相同。 返回类型: Variable **代码示例 1** .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = paddle.div(x, y) # z = x / y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # [2., 0.6, 2.] **代码示例 2** .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((4, 5)).astype('float32') } x = fluid.data(name="x", shape=[2, 3, 4, 5], dtype='float32') y = fluid.data(name="y", shape=[4, 5], dtype='float32') z = paddle.div(x, y, name='z') # z = x / y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value[0]) print(z_value[0].shape) # z.shape=[2,3,4,5] **代码示例 3** .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'), "y": np.random.randint(1, 5, size=[5]).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[5], dtype='float32') output = fluid.data(name="output", shape=[2,3,4,5], dtype="float32") z = paddle.div(x, y, out=output) # z = x / y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value[0]) print(z_value[0].shape) # z.shape=[2,3,4,5] **代码示例 4(动态图)** .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(fluid.CPUPlace()): np_x = np.array([2, 3, 4]).astype('float64') np_y = np.array([1, 5, 2]).astype('float64') x = fluid.dygraph.to_variable(np_x) y = fluid.dygraph.to_variable(np_y) z = paddle.div(x, y) np_z = z.numpy() print(np_z) # [2., 0.6, 2.]