Conv2d ------------------------------- .. py:class:: paddle.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format="NCHW") **二维卷积层** 该OP是二维卷积层(convolution2d layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算输出特征层大小。输入和输出是NCHW或NHWC格式,其中N是批尺寸,C是通道数,H是特征高度,W是特征宽度。卷积核是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是卷积核高度,W是卷积核宽度。如果组数(groups)大于1,C等于输入图像通道数除以组数的结果。详情请参考UFLDL's : `卷积 `_ 。如果bias_attr不为False,卷积计算会添加偏置项。 对每个输入X,有等式: .. math:: Out = \sigma \left ( W * X + b \right ) 其中: - :math:`X` :输入值,NCHW或NHWC格式的4-D Tensor - :math:`W` :卷积核值,MCHW格式的4-D Tensor - :math:`*` :卷积操作 - :math:`b` :偏置值,2-D Tensor,形状为 ``[M,1]`` - :math:`\sigma` :激活函数 - :math:`Out` :输出值,NCHW或NHWC格式的4-D Tensor, 和 ``X`` 的形状可能不同 参数: - **in_channels** (int) - 输入图像的通道数。 - **out_channels** (int) - 由卷积操作产生的输出的通道数。 - **kernel_size** (int|list|tuple) - 卷积核大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积核的高和宽。如果为单个整数,表示卷积核的高和宽都等于该整数。 - **stride** (int|list|tuple,可选) - 步长大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积沿着高和宽的步长。如果为单个整数,表示沿着高和宽的步长都等于该整数。默认值:1。 - **padding** (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 ``padding`` = "SAME"或 ``padding`` = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含4个二元组:当 ``data_format`` 为"NCHW"时为 [[0,0], [0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当 ``data_format`` 为"NHWC"时为[[0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含4个整数值:[padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含2个整数值:[padding_height, padding_width],此时padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_height = padding_width = padding。默认值:0。 - **dilation** (int|list|tuple,可选) - 空洞大小。可以为单个整数或包含两个整数的元组或列表,分别表示卷积核中的元素沿着高和宽的空洞。如果为单个整数,表示高和宽的空洞都等于该整数。默认值:1。 - **groups** (int,可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。 - **padding_mode** (str, 可选): 填充模式。 包括 ``'zeros'``, ``'reflect'``, ``'replicate'`` 或者 ``'circular'``. 默认值: ``'zeros'`` . - **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。 - **bias_attr** (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 ``bias_attr`` 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。 - **data_format** (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。 属性 :::::::::::: .. py:attribute:: weight 本层的可学习参数,类型为 ``Parameter`` .. py:attribute:: bias 本层的可学习偏置,类型为 ``Parameter`` 形状: - 输入: :math:`(N, C_{in}, H_{in}, W_{in})` - 输出: :math:`(N, C_{out}, H_{out}, W_{out})` 其中: .. math:: H_{out} = \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1 W_{out} = \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1 如果 ``padding`` = "SAME": .. math:: H_{out} = \frac{(H_{in} + stride[0] - 1)}{stride[0]} .. math:: W_{out} = \frac{(W_{in} + stride[1] - 1)}{stride[1]} 如果 ``padding`` = "VALID": .. math:: H_{out} = \frac{\left ( H_{in} -\left ( dilation[0]*\left ( kernel\_size[0]-1 \right )+1 \right ) \right )}{stride[0]}+1 W_{out} = \frac{\left ( W_{in} -\left ( dilation[1]*\left ( kernel\_size[1]-1 \right )+1 \right ) \right )}{stride[1]}+1 抛出异常: - ``ValueError`` - 如果 ``data_format`` 既不是"NCHW"也不是"NHWC"。 - ``ValueError`` - 如果 ``input`` 的通道数未被明确定义。 - ``ValueError`` - 如果 ``padding`` 是字符串,既不是"SAME"也不是"VALID"。 - ``ValueError`` - 如果 ``padding`` 含有4个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。 - ``ShapeError`` - 如果输入不是4-D Tensor。 - ``ShapeError`` - 如果输入和卷积核的维度大小不相同。 - ``ShapeError`` - 如果输入的维度大小与 ``stride`` 之差不是2。 - ``ShapeError`` - 如果输出的通道数不能被 ``groups`` 整除。 **代码示例**: .. code-block:: python import numpy as np import paddle import paddle.nn as nn x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32') paddle.disable_static() x_var = paddle.to_tensor(x) conv = nn.Conv2d(4, 6, (3, 3)) y_var = conv(x_var) y_np = y_var.numpy() print(y_np.shape) # (2, 6, 6, 6)