.. _cn_api_fluid_conv2d: conv2d ------------------------------- .. py:function:: paddle.fluid.layers.conv2d(input, filter, stride=1, padding=0, dilation=1, groups=None, use_cudnn=True, name=None) 支持直接输入filter的卷积,卷积二维层(convolution2D layer)根据输入、滤波器(filter)、步长(stride)、填充(padding)、dilations、一组参数计算输出。输入和输出是NCHW格式,N是批尺寸,C是通道数,H是特征高度,W是特征宽度。滤波器是MCHW格式,M是输出图像通道数,C是输入图像通道数,该值须和输入的通道数保持相同,H是滤波器高度,W是滤波器宽度。如果组数大于1,C等于输入图像通道数除以组数的结果。详情请参考UFLDL's : `卷积`_. 对每个输入X,有等式: .. math:: Out = \sigma \left ( W * X + b \right ) 其中: - :math:`X` :输入值,NCHW格式的张量(Tensor) - :math:`W` :滤波器值,MCHW格式的张量(Tensor) - :math:`*` : 卷积操作 - :math:`\sigma` :激活函数 - :math:`Out` :输出值,``Out`` 和 ``X`` 的shape可能不同 **示例** - 输入: 输入shape::math:`( N,C_{in},H_{in},W_{in} )` 滤波器shape: :math:`( C_{out},C_{in},H_{f},W_{f} )` - 输出: 输出shape: :math:`( N,C_{out},H_{out},W_{out} )` 其中 .. math:: H_{out} = \frac{\left ( H_{in}+2*paddings[0]-\left ( dilations[0]*\left ( H_{f}-1 \right )+1 \right ) \right )}{strides[0]}+1 W_{out} = \frac{\left ( W_{in}+2*paddings[1]-\left ( dilations[1]*\left ( W_{f}-1 \right )+1 \right ) \right )}{strides[1]}+1 参数: - **input** (Variable) - 格式为[N,C,H,W]格式的输入图像 - **filter** (int) - 滤波器值。格式为[M, C, H, W]的张量(Tensor) - **stride** (int|tuple) - 步长(stride)大小。如果步长(stride)为元组,则必须包含两个整型数,(stride_H,stride_W)。否则,stride_H = stride_W = stride。默认:stride = 1 - **padding** (int|tuple) - 填充(padding)大小。如果填充(padding)为元组,则必须包含两个整型数,(padding_H,padding_W)。否则,padding_H = padding_W = padding。默认:padding = 0 - **dilation** (int|tuple) - 膨胀(dilation)大小。如果膨胀(dialation)为元组,则必须包含两个整型数,(dilation_H,dilation_W)。否则,dilation_H = dilation_W = dilation。默认:dilation = 1 - **groups** (int) - 卷积二维层(Conv2D Layer)的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=2,滤波器的前一半仅和输入通道的前一半连接。滤波器的后一半仅和输入通道的后一半连接。默认:groups = 1 - **use_cudnn** (bool) - 是否用cudnn核,仅当下载cudnn库才有效。默认:True - **name** (str|None) - 该层名称(可选)。若设为None,则自动为该层命名。 返回:张量,存储卷积和非线性激活结果 返回类型:变量(Variable) 抛出异常: - ``ValueError`` - 如果输入shape和filter_size,stride,padding和group不匹配。 **代码示例**: .. code-block:: python ## paddle 静态图示例 import paddle.fluid as fluid data = fluid.layers.data(name='data', shape=[1, 3, 32, 32], dtype='float32', append_batch_size=False) filter = fluid.layers.data(name='filter', shape=[64, 3, 3, 3], dtype='float32', append_batch_size=False) out = fluid.conv2d(input=data, filter=filter, groups=1, stride=1, padding=1) #out.shape = [1, 64, 32, 32] ## paddle 动态图示例 import paddle.fluid as fluid import numpy as np data = np.random.random((1, 3, 32, 32)).astype(np.float32) filter = np.random.random((64, 3, 3, 3)).astype(np.float32) out = fluid.layers.conv2d(input=data, filter=filter, groups=1, stride=1, padding=1) #out.shape = [1, 64, 32, 32] with fluid.dygraph.guard(): data = fluid.dygraph.to_variable(data) filter = fluid.dygraph.to_variable(filter) out = fluid.conv2d(input=data, filter=filter, groups=1, stride=1, padding=1) # out.shape = [1, 64, 32, 32]