# **CentOS下从源码编译** ## 环境准备 * **CentOS 版本 (64 bit)** * **CentOS 6 (不推荐,不提供编译出现问题时的官方支持)** * **CentOS 7 (GPU 版本支持CUDA 9.0/9.1/9.2/10.0/10.1 CUDA 9.1 仅支持单卡模式)** * **Python 版本 2.7.15+/3.5.1+/3.6/3.7 (64 bit)** * **pip 或 pip3 版本 9.0.1+ (64 bit)** ## 选择CPU/GPU * 如果您的计算机没有 NVIDIA® GPU,请安装CPU版本的PaddlePaddle * 如果您的计算机有NVIDIA® GPU,请确保满足以下条件以编译GPU版PaddlePaddle * **CUDA 工具包10.0配合cuDNN v7.3+(如需多卡支持,需配合NCCL2.3.7及更高)** * **CUDA 工具包9.0配合cuDNN v7.3+(如需多卡支持,需配合NCCL2.3.7及更高)** * **GPU运算能力超过1.0的硬件设备** 您可参考NVIDIA官方文档了解CUDA和CUDNN的安装流程和配置方法,请见[CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/),[cuDNN](https://docs.nvidia.com/deeplearning/sdk/cudnn-install/) * 请确保您已经正确安装nccl2,或者按照以下指令安装nccl2(这里提供的是CentOS 7,CUDA9,cuDNN7下nccl2的安装指令),更多版本的安装信息请参考NVIDIA[官方网站](https://developer.nvidia.com/nccl): wget http://developer.download.nvidia.com/compute/machine-learning/repos/rhel7/x86_64/nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm rpm -i nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm yum update -y yum install -y libnccl-2.3.7-2+cuda9.0 libnccl-devel-2.3.7-2+cuda9.0 libnccl-static-2.3.7-2+cuda9.0 ## 安装步骤 在CentOS的系统下有2种编译方式: * 使用Docker编译(GPU版本只支持CentOS 7) * 本机编译(不提供在CentOS 6下编译中遇到问题的支持) ### **使用Docker编译** [Docker](https://docs.docker.com/install/)是一个开源的应用容器引擎。使用Docker,既可以将PaddlePaddle的安装&使用与系统环境隔离,也可以与主机共享GPU、网络等资源 使用Docker编译PaddlePaddle,您需要: - 在本地主机上[安装Docker](https://hub.docker.com/search/?type=edition&offering=community) - 如需在Linux开启GPU支持,请[安装nvidia-docker](https://github.com/NVIDIA/nvidia-docker) 请您按照以下步骤安装: 1. 请首先选择您希望储存PaddlePaddle的路径,然后在该路径下使用以下命令将PaddlePaddle的源码从github克隆到本地当前目录下名为Paddle的文件夹中: `git clone https://github.com/PaddlePaddle/Paddle.git` 2. 进入Paddle目录下: `cd Paddle` 3. 创建并进入已配置好编译环境的Docker容器: * 编译CPU版本的PaddlePaddle: `docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-dev /bin/bash` > --name paddle-test为您创建的Docker容器命名为paddle-test; > -v $PWD:/paddle 将当前目录挂载到Docker容器中的/paddle目录下(Linux中PWD变量会展开为当前路径的[绝对路径](https://baike.baidu.com/item/绝对路径/481185)); > -it 与宿主机保持交互状态,`hub.baidubce.com/paddlepaddle/paddle:latest-dev` 使用名为`hub.baidubce.com/paddlepaddle/paddle:latest-dev`的镜像创建Docker容器,/bin/bash 进入容器后启动/bin/bash命令。 * 编译GPU版本的PaddlePaddle(仅支持CentOS 7): `nvidia-docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-dev /bin/bash` > --name paddle-test为您创建的Docker容器命名为paddle-test; > -v $PWD:/paddle 将当前目录挂载到Docker容器中的/paddle目录下(Linux中PWD变量会展开为当前路径的[绝对路径](https://baike.baidu.com/item/绝对路径/481185)); > -it 与宿主机保持交互状态,`hub.baidubce.com/paddlepaddle/paddle:latest-dev` 使用名为`hub.baidubce.com/paddlepaddle/paddle:latest-dev`的镜像创建Docker容器,/bin/bash 进入容器后启动/bin/bash命令。 > 注意:hub.baidubce.com/paddlepaddle/paddle:latest-dev内部安装CUDA 10.0。 4. 进入Docker后进入paddle目录下: `cd paddle` 5. 切换到较稳定版本下进行编译: `git checkout [分支名]` 例如: `git checkout release/1.5` 注意:python3.6、python3.7版本从release/1.2分支开始支持 6. 创建并进入/paddle/build路径下: `mkdir -p /paddle/build && cd /paddle/build` 7. 使用以下命令安装相关依赖: For Python2: pip install protobuf For Python3: pip3.5 install protobuf 注意:以上用Python3.5命令来举例,如您的Python版本为3.6/3.7,请将上述命令中的Python3.5改成Python3.6/Python3.7 > 安装protobuf。 `yum install patchelf` > 安装patchelf,PatchELF 是一个小而实用的程序,用于修改ELF可执行文件的动态链接器和RPATH。 8. 执行cmake: >具体编译选项含义请参见[编译选项表](../Tables.html#Compile) >请注意修改参数`-DPY_VERSION`为您希望编译使用的python版本, 例如`-DPY_VERSION=3.5`表示python版本为3.5.x * 对于需要编译**CPU版本PaddlePaddle**的用户: `cmake .. -DPY_VERSION=3.5 -DWITH_GPU=OFF -DWITH_TESTING=OFF -DCMAKE_BUILD_TYPE=Release` * 对于需要编译**GPU版本PaddlePaddle**的用户: `cmake .. -DPY_VERSION=3.5 -DWITH_GPU=ON -DWITH_TESTING=OFF -DCMAKE_BUILD_TYPE=Release` > 我们目前不支持CentOS 6下使用Docker编译GPU版本的PaddlePaddle 9. 执行编译: `make -j$(nproc)` > 使用多核编译 10. 编译成功后进入`/paddle/build/python/dist`目录下找到生成的`.whl`包: `cd /paddle/build/python/dist` 11. 在当前机器或目标机器安装编译好的`.whl`包: For Python2: pip install -U(whl包的名字) For Python3: pip3.5 install -U(whl包的名字) 注意:以上涉及Python3的命令,用Python3.5来举例,如您的Python版本为3.6/3.7,请将上述命令中的Python3.5改成Python3.6/Python3.7 恭喜,至此您已完成PaddlePaddle的编译安装。您只需要进入Docker容器后运行PaddlePaddle,即可开始使用。更多Docker使用请参见[Docker官方文档](https://docs.docker.com) > 注:PaddlePaddle Docker镜像为了减小体积,默认没有安装`vim`,您可以在容器中执行 `yum install -y vim` 来安装 ### **本机编译** 1. 检查您的计算机和操作系统是否符合我们支持的编译标准: `uname -m && cat /etc/*release` 2. 更新`yum`的源: `yum update`, 并添加必要的yum源:`yum install -y epel-release`, 并提前安装[OpenCV](https://opencv.org/releases.html) 3. 安装必要的工具`bzip2`以及`make`: `yum install -y bzip2` , `yum install -y make` 4. 我们支持使用virtualenv进行编译安装,首先请使用以下命令创建一个名为`paddle-venv`的虚环境: * a. 安装Python-dev: For Python2: yum install python-devel For Python3: (请参照Python官方流程安装) * b. 安装pip: For Python2: yum install python-pip (请保证拥有9.0.1及以上的pip版本) For Python3: (请参照Python官方流程安装, 并保证拥有9.0.1及以上的pip3版本,请注意,python3.6及以上版本环境下,pip3并不一定对应python版本,如python3.7下默认只有pip3.7) * c.(Only For Python3)设置Python3相关的环境变量,这里以python3.5版本示例,请替换成您使用的版本(3.6、3.7): 1. 首先使用``` find `dirname $(dirname $(which python3))` -name "libpython3.so"```找到Python lib的路径,如果是3.6或3.7,请将`python3`改成`python3.6`或`python3.7`,然后将下面[python-lib-path]替换为找到文件路径 2. 设置PYTHON_LIBRARIES:`export PYTHON_LIBRARY=[python-lib-path]` 3. 其次使用```find `dirname $(dirname $(which python3))`/include -name "python3.5m"```找到Python Include的路径,请注意python版本,然后将下面[python-include-path]替换为找到文件路径 4. 设置PYTHON_INCLUDE_DIR: `export PYTHON_INCLUDE_DIRS=[python-include-path]` 5. 设置系统环境变量路径:`export PATH=[python-lib-path]:$PATH` (这里将[python-lib-path]的最后两级目录替换为/bin/) * d. 安装虚环境`virtualenv`以及`virtualenvwrapper`并创建名为`paddle-venv`的虚环境:(请注意对应python版本的pip3的命令,如pip3.6、pip3.7) 1. `pip install virtualenv` 或 `pip3 install virtualenv` 2. `pip install virtualenvwrapper` 或 `pip3 install virtualenvwrapper` 3. 找到`virtualenvwrapper.sh`: `find / -name virtualenvwrapper.sh`(请找到对应Python版本的`virtualenvwrapper.sh`) 4. 查看`virtualenvwrapper.sh`中的安装方法: `cat vitualenvwrapper.sh`, 该shell文件中描述了步骤及命令 5. 按照`virtualenvwrapper.sh`中的描述,安装`virtualwrapper` 6. 设置VIRTUALENVWRAPPER_PYTHON:`export VIRTUALENVWRAPPER_PYTHON=[python-lib-path]:$PATH` (这里将[python-lib-path]的最后两级目录替换为/bin/) 7. 创建名为`paddle-venv`的虚环境: `mkvirtualenv paddle-venv` 5. 进入虚环境:`workon paddle-venv` 6. **执行编译前**请您确认在虚环境中安装有[编译依赖表](../Tables.html#third_party)中提到的相关依赖: * 这里特别提供`patchELF`的安装方法,其他的依赖可以使用`yum install`或者`pip install`/`pip3 install` 后跟依赖名称和版本安装: `yum install patchelf` > 不能使用yum安装的用户请参见patchElF github[官方文档](https://gist.github.com/ruario/80fefd174b3395d34c14) 7. 将PaddlePaddle的源码clone在当下目录下的Paddle的文件夹中,并进入Padde目录下: - `git clone https://github.com/PaddlePaddle/Paddle.git` - `cd Paddle` 8. 切换到较稳定release分支下进行编译: `git checkout [分支名]` 例如: `git checkout release/1.5` 9. 并且请创建并进入一个叫build的目录下: `mkdir build && cd build` 10. 执行cmake: >具体编译选项含义请参见[编译选项表](../Tables.html#Compile) * 对于需要编译**CPU版本PaddlePaddle**的用户: For Python2: cmake .. -DWITH_GPU=OFF -DWITH_TESTING=OFF -DCMAKE_BUILD_TYPE=Release For Python3: cmake .. -DPY_VERSION=3.5 -DPYTHON_INCLUDE_DIR=${PYTHON_INCLUDE_DIRS} \ -DPYTHON_LIBRARY=${PYTHON_LIBRARY} -DWITH_GPU=OFF -DWITH_TESTING=OFF -DCMAKE_BUILD_TYPE=Release > 如果遇到`Could NOT find PROTOBUF (missing: PROTOBUF_LIBRARY PROTOBUF_INCLUDE_DIR)`可以重新执行一次cmake指令。 > 请注意PY_VERSION参数更换为您需要的python版本 * 对于需要编译**GPU版本PaddlePaddle**的用户:(**仅支持CentOS7(CUDA10.0/CUDA9)**) 1. 请确保您已经正确安装nccl2,或者按照以下指令安装nccl2(这里提供的是ubuntu 16.04,CUDA9,cuDNN7下nccl2的安装指令),更多版本的安装信息请参考NVIDIA[官方网站](https://developer.nvidia.com/nccl): i. `wget http://developer.download.nvidia.com/compute/machine-learning/repos/rhel7/x86_64/nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm` ii. `rpm -i nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm` iii. `yum install -y libnccl-2.3.7-2+cuda9.0 libnccl-devel-2.3.7-2+cuda9.0 libnccl-static-2.3.7-2+cuda9.0` 2. 如果您已经正确安装了`nccl2`,就可以开始cmake了:(*For Python3: 请给PY_VERSION参数配置正确的python版本*) For Python2: cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCMAKE_BUILD_TYPE=Release For Python3: cmake .. -DPYTHON_EXECUTABLE:FILEPATH=[您可执行的Python3的路径] -DPYTHON_INCLUDE_DIR:PATH=[之前的PYTHON_INCLUDE_DIRS] -DPYTHON_LIBRARY:FILEPATH=[之前的PYTHON_LIBRARY] -DWITH_GPU=ON -DWITH_TESTING=OFF -DCMAKE_BUILD_TYPE=Release 注意:以上涉及Python3的命令,用Python3.5来举例,如您的Python版本为3.6/3.7,请将上述命令中的Python3.5改成Python3.6/Python3.7 11. 使用以下命令来编译: `make -j$(nproc)` > 使用多核编译 > 如果编译过程中显示“Too many open files”错误时,请使用指令 ulimit -n 8192 来增大当前进程允许打开的文件数,一般来说8192可以保证编译完成。 12. 编译成功后进入`/paddle/build/python/dist`目录下找到生成的`.whl`包: `cd /paddle/build/python/dist` 13. 在当前机器或目标机器安装编译好的`.whl`包: `pip install -U(whl包的名字)`或`pip3 install -U(whl包的名字)` 恭喜,至此您已完成PaddlePaddle的编译安装 ## **验证安装** 安装完成后您可以使用 `python` 或 `python3` 进入python解释器,输入`import paddle.fluid as fluid` ,再输入 `fluid.install_check.run_check()` 如果出现`Your Paddle Fluid is installed succesfully!`,说明您已成功安装。 ## **如何卸载** 请使用以下命令卸载PaddlePaddle: * **CPU版本的PaddlePaddle**: `pip uninstall paddlepaddle` 或 `pip3 uninstall paddlepaddle` * **GPU版本的PaddlePaddle**: `pip uninstall paddlepaddle-gpu` 或 `pip3 uninstall paddlepaddle-gpu` 使用Docker安装PaddlePaddle的用户,请进入包含PaddlePaddle的容器中使用上述命令,注意使用对应版本的pip