.. _cn_api_fluid_dygraph_GRUUnit: GRUUnit ------------------------------- .. py:class:: paddle.fluid.dygraph.GRUUnit(name_scope, size, param_attr=None, bias_attr=None, activation='tanh', gate_activation='sigmoid', origin_mode=False, dtype='float32') 该接口用于构建 ``GRU(Gated Recurrent Unit)`` 类的一个可调用对象,具体用法参照 ``代码示例`` 。其用于完成单个时间步内GRU的计算,支持以下两种计算方式: 如果origin_mode为True,则使用的运算公式来自论文 `Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation `_ 。 .. math:: u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\ r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\ \tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\ h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \tilde{h_t} 如果origin_mode为False,则使用的运算公式来自论文 `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling `_ 。 公式如下: .. math:: u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\ r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\ \tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\ h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \tilde{h_t} 其中, :math:`x_t` 为当前时间步的输入,:math:`h_{t-1}` 为前一时间步的隐状态 ``hidden``; :math:`u_t` 、 :math:`r_t` 、 :math:`\tilde{h_t}` 和 :math:`h_t` 分别代表了GRU单元中update gate(更新门)、reset gate(重置门)、candidate hidden(候选隐状态)和隐状态输出; :math:`\odot` 为逐个元素相乘; :math:`W_{uh}, b_u` 、 :math:`W_{rh}, b_r` 和 :math:`W_{ch}, b_c` 分别代表更新门、重置门和候选隐状态在计算时使用的权重矩阵和偏置。在实现上,三个权重矩阵合并为一个维度为 :math:`[D, D \times 3]` 的Tensor存放。 参数: - **size** (int) – 输入数据的维度大小。 - **param_attr** (ParamAttr,可选) – 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。 **注意** - 权重参数维度为 :math:`[T, 3×D]` , :math:`D` 是隐藏状态的规模(hidden size), 其值与输入size相关,计算方式为size除以3取整 。 - 权重参数矩阵所有元素由两部分组成, 一是update gate和reset gate的权重,维度为 :math:`[D, 2×D]` 的2D Tensor,数据类型可以为float32或float64;二是候选隐藏状态(candidate hidden state)的权重矩阵,维度为 :math:`[D, D]` 的2D Tensor,数据类型可以为float32或float64。 - **bias_attr** (ParamAttr,可选) - 指定偏置参数属性的对象。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。 - **activation** (str,可选) – 公式中 :math:`act_c` 激活函数的类型。可以为'identity'、'sigmoid'、'tanh'、'relu'四种激活函数设置值。默认值为'tanh'。 - **gate_activation** (str,可选) – 公式中 :math:`act_g` 激活函数的类型。可以为'identity'、'sigmoid'、'tanh'、'relu'四种激活函数设置值。默认值为'sigmoid'。 - **origin_mode** (bool) – 指明要使用的GRU计算方式,两种计算方式具体差异见公式描述。默认值为False。 - **dtype** (str,可选) – 该层的数据类型,可以为'float32', 'float64'。默认值为'float32'。 返回: None. **代码示例** .. code-block:: python import paddle.fluid as fluid import paddle.fluid.dygraph.base as base import numpy lod = [[2, 4, 3]] D = 5 T = sum(lod[0]) input = numpy.random.rand(T, 3 * D).astype('float32') hidden_input = numpy.random.rand(T, D).astype('float32') with fluid.dygraph.guard(): x = numpy.random.random((3, 32, 32)).astype('float32') gru = fluid.dygraph.GRUUnit(size=D * 3) dy_ret = gru( base.to_variable(input), base.to_variable(hidden_input)) 属性 :::::::::::: .. py:attribute:: weight 本层的可学习参数,类型为 ``Parameter`` .. py:attribute:: bias 本层的可学习偏置,类型为 ``Parameter``