.. _cn_api_fluid_layers_dropout: dropout ------------------------------- .. py:function:: paddle.fluid.layers.dropout(x,dropout_prob,is_test=False,seed=None,name=None,dropout_implementation='downgrade_in_infer') dropout操作 丢弃或者保持x的每个元素独立。Dropout是一种正则化技术,通过在训练过程中阻止神经元节点间的联合适应性来减少过拟合。根据给定的丢弃概率dropout操作符随机将一些神经元输出设置为0,其他的仍保持不变。 dropout op可以从Program中删除,提高执行效率。 参数: - **x** (Variable)-输入张量 - **dropout_prob** (float)-设置为0的单元的概率 - **is_test** (bool)-显示是否进行测试用语的标记 - **seed** (int)-Python整型,用于创建随机种子。如果该参数设为None,则使用随机种子。注:如果给定一个整型种子,始终丢弃相同的输出单元。训练过程中勿用固定不变的种子。 - **name** (str|None)-该层名称(可选)。如果设置为None,则自动为该层命名 - **dropout_implementation** (string) - [‘downgrade_in_infer’(default)|’upscale_in_train’] 其中: 1. downgrade_in_infer(default), 在预测时减小输出结果 - train: out = input * mask - inference: out = input * (1.0 - dropout_prob) (mask是一个张量,维度和输入维度相同,值为0或1,值为0的比例即为 ``dropout_prob`` ) 2. upscale_in_train, 增加训练时的结果 - train: out = input * mask / ( 1.0 - dropout_prob ) - inference: out = input (mask是一个张量,维度和输入维度相同,值为0或1,值为0的比例即为 ``dropout_prob`` ) dropout操作符可以从程序中移除,程序变得高效。 返回:与输入X,shape相同的张量 返回类型:变量 **代码示例**: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32") droped = fluid.layers.dropout(x, dropout_prob=0.5)