# **CentOS下安装** ## 环境准备 * *CentOS 版本 (64 bit)* * *CentOS 6 (GPU版本支持CUDA 9/10, 仅支持单卡)* * *CentOS 7 (GPU版本支持CUDA 8/9/10, 其中CUDA 8仅支持单卡)* * *Python 版本 2.7.15+/3.5.1+/3.6/3.7 (64 bit)* * *pip 或 pip3 版本 9.0.1+ (64 bit)* ### 注意事项 * 可以使用`uname -m && cat /etc/*release`查看本机的操作系统和位数信息 * 可以使用`pip -V`(Python版本为2.7)或`pip3 -V`(Python版本为3.5/3.6/3.7),确认pip/pip3版本是否满足要求 * 如果您对机器环境不了解,请下载使用[快速安装脚本](https://fast-install.bj.bcebos.com/fast_install.sh),配套说明请参考[这里](https://github.com/PaddlePaddle/FluidDoc/tree/develop/doc/fluid/beginners_guide/install/install_script.md)。 ## 选择CPU/GPU * 如果您的计算机没有 NVIDIA® GPU,请安装CPU版本的PaddlePaddle * 如果您的计算机有NVIDIA® GPU,请确保满足以下条件并且安装GPU版PaddlePaddle * *CUDA 工具包10.0配合cuDNN v7.3+(如需多卡支持,需配合NCCL2.3.7及更高)* * *CUDA 工具包9.0配合cuDNN v7.3+(如需多卡支持,需配合NCCL2.3.7及更高)* * *CUDA 工具包8.0配合cuDNN v7.3+(官方不支持多卡)* * *GPU运算能力超过1.0的硬件设备* 您可参考NVIDIA官方文档了解CUDA和CUDNN的安装流程和配置方法,请见[CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/),[cuDNN](https://docs.nvidia.com/deeplearning/sdk/cudnn-install/) * 如果您需要使用多卡环境请确保您已经正确安装nccl2,或者按照以下指令安装nccl2(这里提供的是CentOS 7,CUDA9,cuDNN7下nccl2的安装指令),更多版本的安装信息请参考NVIDIA[官方网站](https://developer.nvidia.com/nccl): wget http://developer.download.nvidia.com/compute/machine-learning/repos/rhel7/x86_64/nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm rpm -i nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm yum update -y yum install -y libnccl-2.3.7-2+cuda9.0 libnccl-devel-2.3.7-2+cuda9.0 libnccl-static-2.3.7-2+cuda9.0 ## 安装方式 CentOS系统下有4种安装方式: * pip安装(推荐) * [Docker安装](./install_Docker.html) * [源码编译安装](./compile/compile_CentOS.html#ct_source) * [Docker源码编译安装](./compile/compile_CentOS.html#ct_docker) 这里为您介绍pip安装方式 ## 安装步骤 * CPU版PaddlePaddle:`pip install -U paddlepaddle` 或 `pip3 install -U paddlepaddle` * GPU版PaddlePaddle:`pip install -U paddlepaddle-gpu` 或 `pip3 install -U paddlepaddle-gpu` 您可[验证是否安装成功](#check),如有问题请查看[FAQ](./FAQ.html) 注: * pip与python版本对应。如果是python2.7, 建议使用`pip`命令; 如果是python3.x, 则建议使用`pip3`命令 * `pip install -U paddlepaddle-gpu` 此命令将安装支持CUDA 10.0 cuDNN v7的PaddlePaddle,如您对CUDA或cuDNN版本有不同要求,可用`pip install -U paddlepaddle-gpu==[版本号]`或 `pip3 install -U paddlepaddle-gpu==[版本号]`命令来安装,版本号请见[这里](https://pypi.org/project/paddlepaddle-gpu/#history), 关于paddlepaddle与CUDA, cuDNN版本的对应关系请见[安装包列表](./Tables.html/#whls) * 默认下载最新稳定版的安装包,如需获取开发版安装包,请参考[这里](./Tables.html/#ciwhls) ## ***验证安装*** 安装完成后您可以使用 `python` 或 `python3` 进入python解释器,输入`import paddle.fluid as fluid` ,再输入 `fluid.install_check.run_check()` 如果出现`Your Paddle Fluid is installed succesfully!`,说明您已成功安装。 ## ***如何卸载*** 请使用以下命令卸载PaddlePaddle: * ***CPU版本的PaddlePaddle***: `pip uninstall paddlepaddle` 或 `pip3 uninstall paddlepaddle` * ***GPU版本的PaddlePaddle***: `pip uninstall paddlepaddle-gpu` 或 `pip3 uninstall paddlepaddle-gpu`