.. _cn_api_fluid_layers_dice_loss: dice_loss ------------------------------- .. py:function:: paddle.fluid.layers.dice_loss(input, label, epsilon=1e-05) dice_loss是比较两批数据相似度,通常用于二值图像分割,即标签为二值。 dice_loss定义为: .. math:: dice\_loss &= 1- \frac{2 * intersection\_area}{total\_rea}\\ &= \frac{(total\_area−intersection\_area)−intersection\_area}{total\_area}\\ &= \frac{union\_area−intersection\_area}{total\_area} 参数: - **input** (Variable) - rank>=2的预测。第一个维度是batch大小,最后一个维度是类编号。 - **label** (Variable)- 与输入tensor rank相同的正确的标注数据(groud truth)。第一个维度是batch大小,最后一个维度是1。 - **epsilon** (float) - 将会加到分子和分母上。如果输入和标签都为空,则确保dice为1。默认值:0.00001 返回: dice_loss shape为[1]。 返回类型: dice_loss(Variable) **代码示例** .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32') label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32') predictions = fluid.layers.softmax(x) loss = fluid.layers.dice_loss(input=predictions, label=label)