# 附录 ## **编译依赖表**

依赖包名称 版本 说明 安装命令
CMake 3.4
GCC 4.8 / 5.4 推荐使用CentOS的devtools2
Python 2.7.x. 依赖libpython2.7.so apt install python-dev yum install python-devel
SWIG 最低 2.0 apt install swig yum install swig
wget any apt install wget yum install wget
openblas any
pip 最低9.0.1 apt install python-pip yum install Python-pip
numpy >=1.12.0 pip install numpy==1.14.0
protobuf 3.1.0 pip install protobuf==3.1.0
wheel any pip install wheel
patchELF any apt install patchelf 或参见github patchELF 官方文档
go >=1.8 可选

***

## **编译选项表**

选项 说明 默认值
WITH_GPU 是否支持GPU ON
WITH_DSO 是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库 ON
WITH_AVX 是否编译含有AVX指令集的PaddlePaddle二进制文件 ON
WITH_PYTHON 是否内嵌PYTHON解释器 ON
WITH_TESTING 是否开启单元测试 OFF
WITH_MKL 是否使用MKL数学库,如果为否则是用OpenBLAS ON
WITH_SYSTEM_BLAS 是否使用系统自带的BLAS OFF
WITH_DISTRIBUTE 是否编译带有分布式的版本 OFF
WITH_BRPC_RDMA 是否使用BRPC RDMA作为RPC协议 OFF
ON_INFER 是否打开预测优化 OFF

**BLAS** PaddlePaddle支持 [MKL](https://software.intel.com/en-us/mkl) 和 [OpenBlAS](http://www.openblas.net) 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集,还会下载MKL-DNN数学库,详细参考[这里](https://github.com/PaddlePaddle/Paddle/tree/release/0.11.0/doc/design/mkldnn#cmake) 。 如果关闭MKL,则会使用OpenBLAS作为BLAS库。 **CUDA/cuDNN** PaddlePaddle在编译时/运行时会自动找到系统中安装的CUDA和cuDNN库进行编译和执行。 使用参数 `-DCUDA_ARCH_NAME=Auto` 可以指定开启自动检测SM架构,加速编译。 PaddlePaddle可以使用cuDNN v5.1之后的任何一个版本来编译运行,但尽量请保持编译和运行使用的cuDNN是同一个版本。 我们推荐使用最新版本的cuDNN。 **编译选项的设置** PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时,首先在系统路径( `/usr/liby` 和 `/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用`-D`命令可以设置,例如: > `cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5` **注意**:这几个编译选项的设置,只在第一次cmake的时候有效。如果之后想要重新设置,推荐清理整个编译目录( rm -rf )后,再指定。 ***

## **安装包列表**

版本号 版本说明
paddlepaddle==[版本号] 例如 paddlepaddle==1.2.0 只支持CPU对应版本的PaddlePaddle,具体版本请参见Pypi
paddlepaddle-gpu==1.2.0 使用CUDA 9.0和cuDNN 7编译的1.2.0版本
paddlepaddle-gpu==1.2.0.post87 使用CUDA 8.0和cuDNN 7编译的1.2.0版本
paddlepaddle-gpu==1.2.0.post85 使用CUDA 8.0和cuDNN 5编译的1.2.0版本

您可以在 [Release History](https://pypi.org/project/paddlepaddle-gpu/#history) 中找到PaddlePaddle-gpu的各个发行版本。 需要注意的是,在v1.3版本中, paddlepaddle-gpu 命令在windows环境下,会默认安装CUDA 8.0和cuDNN 7编译的PaddlePaddle ***

## **多版本whl包列表-Release**

版本说明 cp27-cp27mu cp27-cp27m cp35-cp35m cp36-cp36m cp37-cp37m
cpu-noavx-mkl paddlepaddle-1.4.0-cp27-cp27mu-linux_x86_64.whl paddlepaddle-1.4.0-cp27-cp27m-linux_x86_64.whl paddlepaddle-1.4.0-cp35-cp35m-linux_x86_64.whl paddlepaddle-1.4.0-cp36-cp36m-linux_x86_64.whl paddlepaddle-1.4.0-cp37-cp37m-linux_x86_64.whl
cpu_avx_mkl paddlepaddle-1.4.0-cp27-cp27mu-linux_x86_64.whl paddlepaddle-1.4.0-cp27-cp27m-linux_x86_64.whl paddlepaddle-1.4.0-cp35-cp35m-linux_x86_64.whl paddlepaddle-1.4.0-cp36-cp36m-linux_x86_64.whl paddlepaddle-1.4.0-cp37-cp37m-linux_x86_64.whl
cpu_avx_openblas paddlepaddle-1.4.0-cp27-cp27mu-linux_x86_64.whl paddlepaddle-1.4.0-cp27-cp27m-linux_x86_64.whl paddlepaddle-1.4.0-cp35-cp35m-linux_x86_64.whl paddlepaddle-1.4.0-cp36-cp36m-linux_x86_64.whl paddlepaddle-1.4.0-cp37-cp37m-linux_x86_64.whl
cuda8.0_cudnn5_avx_mkl paddlepaddle_gpu-1.4.0-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl
cuda8.0_cudnn7_noavx_mkl paddlepaddle_gpu-1.4.0-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl
cuda8.0_cudnn7_avx_mkl paddlepaddle_gpu-1.4.0.post87-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-1.4.0.post87-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-1.4.0.post87-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-1.4.0.post87-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-1.4.0.post87-cp37-cp37m-linux_x86_64.whl
cuda9.0_cudnn7_avx_mkl paddlepaddle_gpu-1.4.0-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-1.4.0-cp37-cp37m-linux_x86_64.whl
win_cpu_noavx_openblas - paddlepaddle-1.4.0-cp27-cp27m-win_amd64.whl paddlepaddle-1.4.0-cp35-cp35m-win_amd64.whl paddlepaddle-1.4.0-cp36-cp36m-win_amd64.whl paddlepaddle-1.4.0-cp37-cp37m-win_amd64.whl
win_cpu_noavx_mkl - paddlepaddle-1.4.0-cp27-cp27m-win_amd64.whl paddlepaddle-1.4.0-cp35-cp35m-win_amd64.whl paddlepaddle-1.4.0-cp36-cp36m-win_amd64.whl paddlepaddle-1.4.0-cp37-cp37m-win_amd64.whl
win_cpu_avx_openblas - paddlepaddle-1.4.0-cp27-cp27m-win_amd64.whl paddlepaddle-1.4.0-cp35-cp35m-win_amd64.whl paddlepaddle-1.4.0-cp36-cp36m-win_amd64.whl paddlepaddle-1.4.0-cp37-cp37m-win_amd64.whl
win_cuda8.0_cudnn7_cpu_avx_openblas - paddlepaddle_gpu-1.4.0-cp27-cp27m-win_amd64.whl paddlepaddle_gpu-1.4.0-cp35-cp35m-win_amd64.whl paddlepaddle_gpu-1.4.0-cp36-cp36m-win_amd64.whl paddlepaddle_gpu-1.4.0-cp37-cp37m-win_amd64.whl

### 表格说明 - 纵轴 cpu_noavx_mkl: 只支持CPU训练和预测,使用sse指令集和Intel mkl数学库 cpu_avx_mkl: 只支持CPU训练和预测,使用avx指令集和Intel mkl数学库 cpu_avx_openblas: 只支持CPU训练和预测,使用avx指令集和openblas数学库 cuda8.0_cudnn5_avx_mkl: 支持GPU训练和预测,使用avx指令集和Intel mkl数学库 cuda8.0_cudnn7_noavx_mkl: 支持GPU训练和预测,使用sse指令集和Intel mkl数学库 cuda8.0_cudnn7_avx_mkl: 支持GPU训练和预测,使用avx指令集和Intel mkl数学库 cuda9.0_cudnn7_avx_mkl: 支持GPU训练和预测,使用avx指令集和Intel mkl数学库 - 横轴 一般是类似于“cp27-cp27mu”的形式,其中: 27:python tag,指python2.7,类似的还有“35”、“36”、“37”等 mu:指unicode版本python,若为m则指非unicode版本python - 安装包命名规则 每个安装包都有一个专属的名字,它们是按照Python的官方规则 来命名的,形式如下: {distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl 其中build tag可以缺少,其他部分不能缺少 distribution: wheel名称version: 版本,例如0.14.0 (要求必须是数字格式) python tag: 类似'py27', 'py2', 'py3',用于标明对应的python版本 abi tag: 类似'cp33m', 'abi3', 'none' platform tag: 类似 'linux_x86_64', 'any'

## **多版本whl包列表-dev**

版本说明 cp27-cp27mu cp27-cp27m cp35-cp35m cp36-cp36m cp37-cp37m
cpu-noavx-mkl paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl paddlepaddle-latest-cp35-cp35m-linux_x86_64.whl paddlepaddle-latest-cp36-cp36m-linux_x86_64.whl paddlepaddle-latest-cp37-cp37m-linux_x86_64.whl
cpu_avx_mkl paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl paddlepaddle-latest-cp35-cp35m-linux_x86_64.whl paddlepaddle-latest-cp36-cp36m-linux_x86_64.whl paddlepaddle-latest-cp37-cp37m-linux_x86_64.whl
cpu_avx_openblas paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl paddlepaddle-latest-cp35-cp35m-linux_x86_64.whl paddlepaddle-latest-cp36-cp36m-linux_x86_64.whl paddlepaddle-latest-cp37-cp37m-linux_x86_64.whl
cuda8.0_cudnn5_avx_mkl paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-latest-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-latest-cp37-cp37m-linux_x86_64.whl
cuda8.0_cudnn7_noavx_mkl paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-latest-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-latest-cp37-cp37m-linux_x86_64.whl
cuda8.0_cudnn7_avx_mkl paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-latest-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-latest-cp37-cp37m-linux_x86_64.whl
cuda9.0_cudnn7_avx_mkl paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl paddlepaddle_gpu-latest-cp35-cp35m-linux_x86_64.whl paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl paddlepaddle_gpu-latest-cp37-cp37m-linux_x86_64.whl



## 在Docker中执行PaddlePaddle训练程序 *** 假设您已经在当前目录(比如在/home/work)编写了一个PaddlePaddle的程序: `train.py` (可以参考 [PaddlePaddleBook](https://github.com/PaddlePaddle/book/blob/develop/01.fit_a_line/README.cn.md) 编写),就可以使用下面的命令开始执行训练: cd /home/work docker run -it -v $PWD:/work hub.baidubce.com/paddlepaddle/paddle /work/train.py 上述命令中,`-it` 参数说明容器已交互式运行;`-v $PWD:/work` 指定将当前路径(Linux中PWD变量会展开为当前路径的绝对路径)挂载到容器内部的:`/work` 目录: `hub.baidubce.com/paddlepaddle/paddle` 指定需要使用的容器; 最后`/work/train.py`为容器内执行的命令,即运行训练程序。 当然,您也可以进入到Docker容器中,以交互式的方式执行或调试您的代码: docker run -it -v $PWD:/work hub.baidubce.com/paddlepaddle/paddle /bin/bash cd /work python train.py **注:PaddlePaddle Docker镜像为了减小体积,默认没有安装vim,您可以在容器中执行** `apt-get install -y vim` **安装后,在容器中编辑代码。**

## 使用Docker启动PaddlePaddle Book教程 *** 使用Docker可以快速在本地启动一个包含了PaddlePaddle官方Book教程的Jupyter Notebook,可以通过网页浏览。 PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。 如果您想要更深入了解deep learning,PaddlePaddle Book一定是您最好的选择。 大家可以通过它阅读教程,或者制作和分享带有代码、公式、图表、文字的交互式文档。 我们提供可以直接运行PaddlePaddle Book的Docker镜像,直接运行: `docker run -p 8888:8888 hub.baidubce.com/paddlepaddle/book` 国内用户可以使用下面的镜像源来加速访问: `docker run -p 8888:8888 hub.baidubce.com/paddlepaddle/book` 然后在浏览器中输入以下网址: `http://localhost:8888/` 就这么简单,享受您的旅程!如有其他问题请参见[FAQ](#FAQ)

## 使用Docker执行GPU训练 *** 为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用 [nvidia-docker](https://github.com/NVIDIA/nvidia-docker)来运行镜像。 请不要忘记提前在物理机上安装GPU最新驱动。 `nvidia-docker run -it -v $PWD:/work hub.baidubce.com/paddlepaddle/paddle:latest-gpu /bin/bash` **注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:** export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') \ $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') docker run ${CUDA_SO} \ ${DEVICES} -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu **关于AVX:** AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认 是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独编译PaddlePaddle为no-avx版本。 以下指令能检查Linux电脑是否支持AVX: `if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi` 如果输出是No,就需要选择使用no-AVX的镜像