.. _cn_api_distributed_spawn: spawn ----- .. py:function:: paddle.distributed.spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options) 使用 ``spawn`` 方法启动多进程任务。 参数 ::::::::: - func (function) - 由 ``spawn`` 方法启动的进程所调用的目标函数。该目标函数需要能够被 ``pickled`` (序列化),所以目标函数必须定义为模块的一级函数,不能是内部子函数或者类方法。 - args (tuple, 可选) - 传入目标函数 ``func`` 的参数。 - nprocs (int, 可选) - 启动进程的数目。默认值为-1。当 ``nproc`` 为-1时,模型执行时将会从环境变量中获取当前可用的所有设备进行使用:如果使用GPU执行任务,将会从环境变量 ``CUDA_VISIBLE_DEVICES`` 中获取当前所有可用的设备ID;如果使用CPU执行任务,将会从环境变量 ``CPU_NUM`` 中获取当前可用的CPU设备数,例如,可以通过指令 ``export CPU_NUM=4`` 配置默认可用CPU设备数,如果此环境变量没有设置,将会默认设置该环境变量的值为1。 - join (bool, 可选) - 对所有启动的进程执行阻塞的 ``join`` ,等待进程执行结束。默认为True。 - daemon (bool, 可选) - 配置启动进程的 ``daemon`` 属性。默认为False。 - **options (dict, 可选) - 其他初始化并行执行环境的配置选项。目前支持以下选项: (1) start_method (string) - 启动子进程的方法。进程的启动方法可以是 ``spawn`` , ``fork`` , ``forkserver`` 。 因为CUDA运行时环境不支持 ``fork`` 方法,当在子进程中使用CUDA时,需要使用 ``spawn`` 或者 ``forkserver`` 方法启动进程。默认方法为 ``spawn`` ; (2) cluster_node_ips (string) - 运行集群的节点(机器)IP,例如 "192.168.0.16,192.168.0.17" ,默认值为 "127.0.0.1" ; (3) node_ip (string) - 当前节点(机器)的IP。例如 "192.168.0.16" , 默认值为 "127.0.0.1" ; (4) started_port (int) - 一个训练节点(机器)上各训练进程的起始端口。例如 6170. 默认值为None ; (5) selected_gpus (string) - 指定训练使用的GPU ID, 例如 "0,1,2,3" , 默认值为None ; (6) print_config (bool) - 打印当前并行训练的配置, 默认值为False ; (7) use_paddlecloud (bool) - 配置是否使用PaddleCloud启动多进程任务,默认值为False。 返回 ::::::::: ``MultiprocessContext`` 对象,持有创建的多个进程。 代码示例 ::::::::: .. code-block:: python from __future__ import print_function import paddle import paddle.nn as nn import paddle.optimizer as opt import paddle.distributed as dist class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) def train(print_result=False): # 1. enable dynamic mode paddle.disable_static() # 2. initialize parallel environment dist.init_parallel_env() # 3. create data parallel layer & optimizer layer = LinearNet() dp_layer = paddle.DataParallel(layer) loss_fn = nn.MSELoss() adam = opt.Adam( learning_rate=0.001, parameters=dp_layer.parameters()) # 4. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) if print_result is True: print("loss:", loss.numpy()) loss = dp_layer.scale_loss(loss) loss.backward() dp_layer.apply_collective_grads() adam.step() adam.clear_grad() # Usage 1: only pass function. # If your training method no need any argument, and # use all visible devices for parallel training. if __name__ == '__main__': dist.spawn(train) # Usage 2: pass function and arguments. # If your training method need some arguments, and # use all visible devices for parallel training. if __name__ == '__main__': dist.spawn(train, args=(True,)) # Usage 3: pass function, arguments and nprocs. # If your training method need some arguments, and # only use part of visible devices for parallel training. # If your machine hold 8 cards {0,1,2,3,4,5,6,7}, # this case will use cards {0,1}; If you set # CUDA_VISIBLE_DEVICES=4,5,6,7, this case will use # cards {4,5} if __name__ == '__main__': dist.spawn(train, args=(True,), nprocs=2) # Usage 4: pass function, arguments, nprocs and selected_gpus. # If your training method need some arguments, and # only use part of visible devices for parallel training, # but you can't set your machine's environment varibale # CUDA_VISIBLE_DEVICES, such as it is None or all cards # {0,1,2,3,4,5,6,7}, you can pass `selelcted_gpus` to # select the GPU cards you want to use. For example, # this case will use cards {4,5} if your machine hold 8 cards. if __name__ == '__main__': dist.spawn(train, args=(True,), nprocs=2, selelcted_gpus='4,5')