.. _cn_api_fluid_optimizer_AdamaxOptimizer: AdamaxOptimizer ------------------------------- .. py:class:: paddle.fluid.optimizer.AdamaxOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, regularization=None, name=None) Adamax优化器是参考 `Adam论文 `_ 第7节Adamax优化相关内容所实现的。Adamax算法是基于无穷大范数的 `Adam `_ 算法的一个变种,使学习率更新的算法更加稳定和简单。 其参数更新的计算公式如下: .. math:: \\t = t + 1 .. math:: moment\_out=\beta_1∗moment+(1−\beta_1)∗grad .. math:: inf\_norm\_out=\max{(\beta_2∗inf\_norm+\epsilon, \left|grad\right|)} .. math:: learning\_rate=\frac{learning\_rate}{1-\beta_1^t} .. math:: param\_out=param−learning\_rate*\frac{moment\_out}{inf\_norm\_out}\\ 相关论文:`Adam: A Method for Stochastic Optimization `_ 论文中没有 ``epsilon`` 参数。但是,为了保持数值稳定性, 避免除0错误, 此处增加了这个参数。 参数: - **learning_rate** (float|Variable,可选) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个值为浮点型的Variable,默认值为0.001 - **beta1** (float, 可选) - 一阶矩估计的指数衰减率,默认值为0.9 - **beta2** (float, 可选) - 二阶矩估计的指数衰减率,默认值为0.999 - **epsilon** (float, 可选) - 保持数值稳定性的短浮点类型值,默认值为1e-08 - **regularization** (WeightDecayRegularizer, 可选) - 正则化函数,用于减少泛化误差。例如可以是 :ref:`cn_api_fluid_regularizer_L2DecayRegularizer` ,默认值为None - **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None .. note:: 目前 ``AdamaxOptimizer`` 不支持 Sparse Parameter Optimization(稀疏参数优化)。 **代码示例**: .. code-block:: python import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): data = fluid.layers.data(name='X', shape=[1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2) adam.minimize(loss) # Run the startup program once and only once. exe.run(startup_program) x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) .. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None) 为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。 参数: - **loss** (Variable) – 需要最小化的损失值变量 - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program` - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter - **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成集合,默认值为None - **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None 返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值 **代码示例**: .. code-block:: python import numpy import paddle.fluid as fluid data = fluid.layers.data(name='X', shape=[1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) adam = fluid.optimizer.Adamax(learning_rate=0.2) adam.minimize(loss) place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) x = numpy.random.random(size=(10, 1)).astype('float32') exe.run(fluid.default_startup_program()) outs = exe.run(program=fluid.default_main_program(), feed={'X': x}, fetch_list=[loss.name])