diff --git a/doc/fluid/api_cn/executor_cn/Executor_cn.rst b/doc/fluid/api_cn/executor_cn/Executor_cn.rst index 7e98d3d4ec9f89208b3810823be4015c940f0fc0..273b6bc79031e78ee56f65b4f7dbf575748d6f6b 100644 --- a/doc/fluid/api_cn/executor_cn/Executor_cn.rst +++ b/doc/fluid/api_cn/executor_cn/Executor_cn.rst @@ -39,7 +39,7 @@ Executor支持单GPU、多GPU以及CPU运行。 train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): - data = fluid.layers.data(name='X', shape=[1], dtype='float32') + data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) fluid.optimizer.SGD(learning_rate=0.01).minimize(loss) @@ -130,7 +130,7 @@ Executor支持单GPU、多GPU以及CPU运行。 place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) - data = fluid.layers.data(name='X', shape=[1], dtype='float32') + data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) adam = fluid.optimizer.Adam() @@ -175,8 +175,8 @@ train_from_dataset可以非常容易扩展到大规模分布式在线和离线 place = fluid.CPUPlace() # 通过设置place = fluid.CUDAPlace(0)使用GPU exe = fluid.Executor(place) - x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64") - y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1) + x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64") + y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1) dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([x, y]) dataset.set_thread(1) @@ -210,12 +210,13 @@ train_from_dataset可以非常容易扩展到大规模分布式在线和离线 import paddle.fluid as fluid place = fluid.CPUPlace() # 使用GPU时可设置place = fluid.CUDAPlace(0) exe = fluid.Executor(place) - x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64") - y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1) + x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64") + y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1) dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([x, y]) dataset.set_thread(1) filelist = [] # 您可以设置您自己的filelist,如filelist = ["dataA.txt"] dataset.set_filelist(filelist) exe.run(fluid.default_startup_program()) - exe.infer_from_dataset(program=fluid.default_main_program(),dataset=dataset) + exe.infer_from_dataset(program=fluid.default_main_program(), + dataset=dataset)