diff --git a/doc/fluid/user_guides/howto/dygraph/DyGraph_en.md b/doc/fluid/user_guides/howto/dygraph/DyGraph_en.md index e96ca0ff226b7af8b2bdf3bd6fc268b95b43e8f0..6f8565c2a115478adb8bffc840052973924dc4a7 100644 --- a/doc/fluid/user_guides/howto/dygraph/DyGraph_en.md +++ b/doc/fluid/user_guides/howto/dygraph/DyGraph_en.md @@ -311,7 +311,7 @@ Please refer to contents in [PaddleBook](https://github.com/PaddlePaddle/book/tr train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size= BATCH_SIZE, drop_last=True) - dy_param_init_value = {} + np.set_printoptions(precision=3, suppress=True) for epoch in range(epoch_num): for batch_id, data in enumerate(train_reader()): @@ -331,10 +331,7 @@ Please refer to contents in [PaddleBook](https://github.com/PaddlePaddle/book/tr dy_out = avg_loss.numpy() - if epoch == 0 and batch_id == 0: - for param in mnist.parameters(): - dy_param_init_value[param.name] = param.numpy() - + avg_loss.backward() sgd.minimize(avg_loss) mnist.clear_gradients() @@ -388,11 +385,11 @@ Please refer to contents in [PaddleBook](https://github.com/PaddlePaddle/book/tr 
In model traning, you can use ` fluid.dygraph.save_persistables(your_model_object.state_dict(), "save_dir")` to save all model parameters in `your_model_object`. And you can define Python Dictionary introduction of "parameter name" - "parameter object" that needs to be saved yourself. -Or use `your_modle_object.load_dict( - fluid.dygraph.load_persistables(your_model_object.state_dict(), "save_dir"))` interface to recover saved model parameters to continue training. +Or use `your_modle_object.load_dict(fluid.dygraph.load_persistables("save_dir"))` interface to recover saved model parameters to continue training. The following codes show how to save parameters and read saved parameters to continue training in the "Handwriting Digit Recognition" task. + dy_param_init_value={} for epoch in range(epoch_num): for batch_id, data in enumerate(train_reader()): dy_x_data = np.array( @@ -419,8 +416,8 @@ The following codes show how to save parameters and read saved parameters to con for param in mnist.parameters(): dy_param_init_value[param.name] = param.numpy() - mnist.load_dict(fluid.dygraph.load_persistables(mnist.state_dict(), "save_dir")) - restore = mnist.parameters() + mnist.load_dict(fluid.dygraph.load_persistables("save_dir")) + restore = mnist.parameters() # check save and load success = True for value in restore: @@ -478,7 +475,7 @@ In the second `fluid.dygraph.guard()` context we can use previously saved `check mnist.train() print("Loss at epoch {} , Test avg_loss is: {}, acc is: {}".format(epoch, test_cost, test_acc)) - fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir") + fluid.dygraph.save_persistables("save_dir") print("checkpoint saved") with fluid.dygraph.guard(): @@ -534,9 +531,9 @@ In the second `fluid.dygraph.guard()` context we can use previously saved `check ## Build Compatible Model Take the "Handwriting Digit Recognition" in the last step for example, the same modlel codes can execute in `Executor` of PaddlePaddle: - + exe = fluid.Executor(fluid.CPUPlace( - ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) + ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) mnist = MNIST("mnist") sgd = SGDOptimizer(learning_rate=1e-3) @@ -551,39 +548,24 @@ Take the "Handwriting Digit Recognition" in the last step for example, the same avg_loss = fluid.layers.mean(loss) sgd.minimize(avg_loss) - # initialize params and fetch them - static_param_init_value = {} - static_param_name_list = [] - for param in mnist.parameters(): - static_param_name_list.append(param.name) + out = exe.run(fluid.default_startup_program()) + + for epoch in range(epoch_num): + for batch_id, data in enumerate(train_reader()): + static_x_data = np.array( + [x[0].reshape(1, 28, 28) + for x in data]).astype('float32') + y_data = np.array( + [x[1] for x in data]).astype('int64').reshape([BATCH_SIZE, 1]) - out = exe.run(fluid.default_startup_program(), - fetch_list=static_param_name_list) + fetch_list = [avg_loss.name] + out = exe.run( + fluid.default_main_program(), + feed={"pixel": static_x_data, + "label": y_data}, - for i in range(len(static_param_name_list)): - static_param_init_value[static_param_name_list[i]] = out[i] + static_out = out[0] - for epoch in range(epoch_num): - for batch_id, data in enumerate(train_reader()): - static_x_data = np.array( - [x[0].reshape(1, 28, 28) - for x in data]).astype('float32') - y_data = np.array( - [x[1] for x in data]).astype('int64').reshape([BATCH_SIZE, 1]) - - fetch_list = [avg_loss.name] - fetch_list.extend(static_param_name_list) - out = exe.run( - fluid.default_main_program(), - feed={"pixel": static_x_data, - "label": y_data}, - fetch_list=fetch_list) - - static_param_value = {} - static_out = out[0] - for i in range(1, len(out)): - static_param_value[static_param_name_list[i - 1]] = out[ - i]