提交 d4adaa95 编写于 作者: H Hao Wang 提交者: Cheerego

[to 1.3] cn api debug (#655)

* debug

* fix 2 -conv2d

* "锚" ==> anchor(s)
上级 335f5cd5
...@@ -11,16 +11,16 @@ load_inference_model ...@@ -11,16 +11,16 @@ load_inference_model
.. py:class:: paddle.fluid.io.load_inference_model(dirname, executor, model_filename=None, params_filename=None, pserver_endpoints=None) .. py:class:: paddle.fluid.io.load_inference_model(dirname, executor, model_filename=None, params_filename=None, pserver_endpoints=None)
从指定目录中加载 推理model(inference model) 从指定目录中加载预测模型model(inference model)
参数: 参数:
- **dirname** (str) – model的路径 - **dirname** (str) – model的路径
- **executor** (Executor) – 运行 inference model的 ``executor`` - **executor** (Executor) – 运行 inference model的 ``executor``
- **model_filename** (str|None) – 推理 Program 的文件名称。如果设置为None,将使用默认的文件名为: ``__model__`` - **model_filename** (str|None) – 存储着预测 Program 的文件名称。如果设置为None,将使用默认的文件名为: ``__model__``
- **params_filename** (str|None) – 加载所有相关参数的文件名称。如果设置为None,则参数将保存在单独的文件中。 - **params_filename** (str|None) – 加载所有相关参数的文件名称。如果设置为None,则参数将保存在单独的文件中。
- **pserver_endpoints** (list|None) – 只有在分布式推理时需要用到。 当在训练时使用分布式 look up table , 需要这个参数. 该参数是 pserver endpoints 的列表 - **pserver_endpoints** (list|None) – 只有在分布式预测时需要用到。 当在训练时使用分布式 look up table , 需要这个参数. 该参数是 pserver endpoints 的列表
返回: 这个函数的返回有三个元素的元组(Program,feed_target_names, fetch_targets)。Program 是一个 ``Program`` ,它是推理 ``Program``。 ``feed_target_names`` 是一个str列表,它包含需要在推理 ``Program`` 中提供数据的变量的名称。` `fetch_targets`` 是一个 ``Variable`` 列表,从中我们可以得到推断结果。 返回: 这个函数的返回有三个元素的元组(Program,feed_target_names, fetch_targets)。Program 是一个 ``Program`` ,它是预测 ``Program``。 ``feed_target_names`` 是一个str列表,它包含需要在预测 ``Program`` 中提供数据的变量的名称。``fetch_targets`` 是一个 ``Variable`` 列表,从中我们可以得到推断结果。
返回类型:元组(tuple) 返回类型:元组(tuple)
...@@ -39,7 +39,7 @@ load_inference_model ...@@ -39,7 +39,7 @@ load_inference_model
fetch_list=fetch_targets) fetch_list=fetch_targets)
# 在这个示例中,inference program 保存在 ./infer_model/__model__”中 # 在这个示例中,inference program 保存在 ./infer_model/__model__”中
# 参数保存在./infer_mode 单独的若干文件中 # 参数保存在./infer_mode 单独的若干文件中
# 加载 inference program 后, executor 使用 fetch_targets 和 feed_target_names 执行Program, 得到推理结果 # 加载 inference program 后, executor 使用 fetch_targets 和 feed_target_names 执行Program, 得到预测结果
...@@ -184,19 +184,19 @@ save_inference_model ...@@ -184,19 +184,19 @@ save_inference_model
.. py:class:: paddle.fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program=None, model_filename=None, params_filename=None, export_for_deployment=True) .. py:class:: paddle.fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program=None, model_filename=None, params_filename=None, export_for_deployment=True)
修改指定的 ``main_program`` ,构建一个专门用于推理的 ``Program``,然后 ``executor`` 把它和所有相关参数保存到 ``dirname`` 中 修改指定的 ``main_program`` ,构建一个专门用预测的 ``Program``,然后 ``executor`` 把它和所有相关参数保存到 ``dirname`` 中
``dirname`` 用于指定保存变量的目录。如果变量保存在指定目录的若干文件中,设置文件名 None; 如果所有变量保存在一个文件中,请使用filename来指定它 ``dirname`` 用于指定保存变量的目录。如果变量保存在指定目录的若干文件中,设置文件名 None; 如果所有变量保存在一个文件中,请使用filename来指定它
参数: 参数:
- **dirname** (str) – 保存推理model的路径 - **dirname** (str) – 保存预测model的路径
- **feeded_var_names** (list[str]) – 推理(inference)需要 feed 的数据 - **feeded_var_names** (list[str]) – 预测(inference)需要 feed 的数据
- **target_vars** (list[Variable]) – 保存推理(inference)结果的 Variables - **target_vars** (list[Variable]) – 保存预测(inference)结果的 Variables
- **executor** (Executor) – executor 保存 inference model - **executor** (Executor) – executor 保存 inference model
- **main_program** (Program|None) – 使用 ``main_program`` ,构建一个专门用于推理的 ``Program`` (inference model). 如果为None, 使用 ``default main program`` 默认: None. - **main_program** (Program|None) – 使用 ``main_program`` ,构建一个专门用于预测的 ``Program`` (inference model). 如果为None, 使用 ``default main program`` 默认: None.
- **model_filename** (str|None) – 保存 推理P rogram 的文件名称。如果设置为None,将使用默认的文件名为: ``__model__`` - **model_filename** (str|None) – 保存预测Program 的文件名称。如果设置为None,将使用默认的文件名为: ``__model__``
- **params_filename** (str|None) – 保存所有相关参数的文件名称。如果设置为None,则参数将保存在单独的文件中。 - **params_filename** (str|None) – 保存所有相关参数的文件名称。如果设置为None,则参数将保存在单独的文件中。
- **export_for_deployment** (bool) – 如果为真,Program将被修改为只支持直接推理部署的Program。否则,将存储更多的信息,方便优化和再训练。目前只支持True。 - **export_for_deployment** (bool) – 如果为真,Program将被修改为只支持直接预测部署的Program。否则,将存储更多的信息,方便优化和再训练。目前只支持True。
返回: None 返回: None
...@@ -214,7 +214,7 @@ save_inference_model ...@@ -214,7 +214,7 @@ save_inference_model
target_vars=[predict_var], executor=exe) target_vars=[predict_var], executor=exe)
# 在这个示例中,函数将修改默认的主程序让它适合于推断‘predict_var’。修改的 # 在这个示例中,函数将修改默认的主程序让它适合于推断‘predict_var’。修改的
# 推理Program 将被保存在 ./infer_model/__model__”中。 # 预测Program 将被保存在 ./infer_model/__model__”中。
# 和参数将保存在文件夹下的单独文件中 ./infer_mode # 和参数将保存在文件夹下的单独文件中 ./infer_mode
......
...@@ -224,9 +224,9 @@ memory用于缓存分段数据。memory的初始值可以是零,也可以是 ...@@ -224,9 +224,9 @@ memory用于缓存分段数据。memory的初始值可以是零,也可以是
返回:可以访问的RNN的输入变量,。 返回:可以访问的RNN的输入变量,。
.. py:method:: block(*args, **kwds) .. py:method:: block()
用户在RNN中定义operators的block。有关详细信息,请参阅class ``docstring`` 。 用户在RNN中定义operators的block。
.. py:method:: memory(init=None, shape=None, value=0.0, need_reorder=False, dtype='float32') .. py:method:: memory(init=None, shape=None, value=0.0, need_reorder=False, dtype='float32')
...@@ -321,7 +321,7 @@ memory用于缓存分段数据。memory的初始值可以是零,也可以是 ...@@ -321,7 +321,7 @@ memory用于缓存分段数据。memory的初始值可以是零,也可以是
equal equal
------------------------------- -------------------------------
.. py:function:: paddle.fluid.layers.equal(x,y,cond=None,**ignored) .. py:function:: paddle.fluid.layers.equal(x,y,cond=None)
**equal** **equal**
该层返回 :math:`x==y` 按逐元素运算而得的真值。 该层返回 :math:`x==y` 按逐元素运算而得的真值。
...@@ -437,7 +437,7 @@ increment ...@@ -437,7 +437,7 @@ increment
is_empty is_empty
------------------------------- -------------------------------
.. py:function:: paddle.fluid.layers.is_empty(x, cond=None, **ignored) .. py:function:: paddle.fluid.layers.is_empty(x, cond=None)
测试变量是否为空 测试变量是否为空
...@@ -472,7 +472,7 @@ is_empty ...@@ -472,7 +472,7 @@ is_empty
less_than less_than
------------------------------- -------------------------------
.. py:function:: paddle.fluid.layers.less_than(x, y, force_cpu=None, cond=None, **ignored) .. py:function:: paddle.fluid.layers.less_than(x, y, force_cpu=None, cond=None)
该函数按元素出现顺序依次在X,Y上操作,并返回 ``Out`` ,它们三个都是n维tensor(张量)。 该函数按元素出现顺序依次在X,Y上操作,并返回 ``Out`` ,它们三个都是n维tensor(张量)。
...@@ -2104,9 +2104,9 @@ conv2d ...@@ -2104,9 +2104,9 @@ conv2d
- :math:`X` :输入值,NCHW格式的张量(Tensor) - :math:`X` :输入值,NCHW格式的张量(Tensor)
- :math:`W` :滤波器值,MCHW格式的张量(Tensor) - :math:`W` :滤波器值,MCHW格式的张量(Tensor)
- :math:`*` : 卷积操作 - :math:`*` : 卷积操作
- :math:`b` :Bias值,二维张量(Tensor),shape为[M,1] - :math:`b` :Bias值,二维张量(Tensor),shape为 ``[M,1]``
- :math:`\sigma` :激活函数 - :math:`\sigma` :激活函数
- :math:`Out` :输出值,*Out*和**X**的shape可能不同 - :math:`Out` :输出值,``Out`` 和 ``X`` 的shape可能不同
**示例** **示例**
...@@ -2126,7 +2126,7 @@ conv2d ...@@ -2126,7 +2126,7 @@ conv2d
H_{out} = \frac{\left ( H_{in}+2*paddings[0]-\left ( dilations[0]*\left ( H_{f}-1 \right )+1 \right ) \right )}{strides[0]}+1 H_{out} = \frac{\left ( H_{in}+2*paddings[0]-\left ( dilations[0]*\left ( H_{f}-1 \right )+1 \right ) \right )}{strides[0]}+1
W_{out} = \frac{\left ( H_{in}+2*paddings[1]-\left ( dilations[1]*\left ( W_{f}-1 \right )+1 \right ) \right )}{strides[1]}+1 W_{out} = \frac{\left ( W_{in}+2*paddings[1]-\left ( dilations[1]*\left ( W_{f}-1 \right )+1 \right ) \right )}{strides[1]}+1
参数: 参数:
- **input** (Variable) - 格式为[N,C,H,W]格式的输入图像 - **input** (Variable) - 格式为[N,C,H,W]格式的输入图像
...@@ -2191,7 +2191,7 @@ conv2d_transpose ...@@ -2191,7 +2191,7 @@ conv2d_transpose
- :math:`*` : 卷积操作 - :math:`*` : 卷积操作
- :math:`b` : 偏置(bias),二维张量,shape为 ``[m,1]`` - :math:`b` : 偏置(bias),二维张量,shape为 ``[M,1]``
- :math:`σ` : 激活函数 - :math:`σ` : 激活函数
...@@ -2230,7 +2230,7 @@ conv2d_transpose ...@@ -2230,7 +2230,7 @@ conv2d_transpose
- **filter_size** (int|tuple|None) - 滤波器大小。如果filter_size是一个tuple,则形式为(filter_size_H, filter_size_W)。否则,滤波器将是一个方阵。如果filter_size=None,则内部会计算输出大小。 - **filter_size** (int|tuple|None) - 滤波器大小。如果filter_size是一个tuple,则形式为(filter_size_H, filter_size_W)。否则,滤波器将是一个方阵。如果filter_size=None,则内部会计算输出大小。
- **padding** (int|tuple) - 填充大小。如果padding是一个元组,它必须包含两个整数(padding_H、padding_W)。否则,padding_H = padding_W = padding。默认:padding = 0。 - **padding** (int|tuple) - 填充大小。如果padding是一个元组,它必须包含两个整数(padding_H、padding_W)。否则,padding_H = padding_W = padding。默认:padding = 0。
- **stride** (int|tuple) - 步长大小。如果stride是一个元组,那么元组的形式为(stride_H、stride_W)。否则,stride_H = stride_W = stride。默认:stride = 1。 - **stride** (int|tuple) - 步长大小。如果stride是一个元组,那么元组的形式为(stride_H、stride_W)。否则,stride_H = stride_W = stride。默认:stride = 1。
- **dilation** (int|元组) - 膨胀大小。如果dilation是一个元组,那么元组的形式为(dilation_H, dilation_W)。否则,dilation_H = dilation_W = dilation_W。默认:dilation= 1。 - **dilation** (int|元组) - 膨胀(dilation)大小。如果dilation是一个元组,那么元组的形式为(dilation_H, dilation_W)。否则,dilation_H = dilation_W = dilation_W。默认:dilation= 1。
- **groups** (int) - Conv2d转置层的groups个数。从Alex Krizhevsky的CNN Deep论文中的群卷积中受到启发,当group=2时,前半部分滤波器只连接到输入通道的前半部分,而后半部分滤波器只连接到输入通道的后半部分。默认值:group = 1。 - **groups** (int) - Conv2d转置层的groups个数。从Alex Krizhevsky的CNN Deep论文中的群卷积中受到启发,当group=2时,前半部分滤波器只连接到输入通道的前半部分,而后半部分滤波器只连接到输入通道的后半部分。默认值:group = 1。
- **param_attr** (ParamAttr|None) - conv2d_transfer中可学习参数/权重的属性。如果param_attr值为None或ParamAttr的一个属性,conv2d_transfer使用ParamAttrs作为param_attr的值。如果没有设置的param_attr初始化器,那么使用Xavier初始化。默认值:None。 - **param_attr** (ParamAttr|None) - conv2d_transfer中可学习参数/权重的属性。如果param_attr值为None或ParamAttr的一个属性,conv2d_transfer使用ParamAttrs作为param_attr的值。如果没有设置的param_attr初始化器,那么使用Xavier初始化。默认值:None。
- **bias_attr** (ParamAttr|bool|None) - conv2d_tran_bias中的bias属性。如果设置为False,则不会向输出单元添加偏置。如果param_attr值为None或ParamAttr的一个属性,将conv2d_transfer使用ParamAttrs作为,bias_attr。如果没有设置bias_attr的初始化器,bias将初始化为零。默认值:None。 - **bias_attr** (ParamAttr|bool|None) - conv2d_tran_bias中的bias属性。如果设置为False,则不会向输出单元添加偏置。如果param_attr值为None或ParamAttr的一个属性,将conv2d_transfer使用ParamAttrs作为,bias_attr。如果没有设置bias_attr的初始化器,bias将初始化为零。默认值:None。
...@@ -2283,9 +2283,9 @@ conv3d ...@@ -2283,9 +2283,9 @@ conv3d
- :math:`X` :输入值,NCHW格式的张量(Tensor) - :math:`X` :输入值,NCHW格式的张量(Tensor)
- :math:`W` :滤波器值,MCHW格式的张量(Tensor) - :math:`W` :滤波器值,MCHW格式的张量(Tensor)
- :math:`*` : 卷积操作 - :math:`*` : 卷积操作
- :math:`b` :Bias值,二维张量(Tensor),形为[M,1] - :math:`b` :Bias值,二维张量(Tensor),形为 ``[M,1]``
- :math:`\sigma` :激活函数 - :math:`\sigma` :激活函数
- :math:`Out` :输出值, 和 :math:`X` 的形状可能不同 - :math:`Out` :输出值, 和 ``X`` 的形状可能不同
**示例** **示例**
...@@ -2368,7 +2368,7 @@ conv3d_transpose ...@@ -2368,7 +2368,7 @@ conv3d_transpose
- :math:`*` : 卷积操作 - :math:`*` : 卷积操作
- :math:`b` : 偏置(bias),二维张量,shape为[m,1] - :math:`b` : 偏置(bias),二维张量,shape为 ``[M,1]``
- :math:`σ` : 激活函数 - :math:`σ` : 激活函数
...@@ -4430,7 +4430,7 @@ im2sequence ...@@ -4430,7 +4430,7 @@ im2sequence
- **filter_size** (int|tuple|None) - 滤波器大小。如果filter_size是一个tuple,它必须包含两个整数(filter_size_H, filter_size_W)。否则,过滤器将是一个方阵。 - **filter_size** (int|tuple|None) - 滤波器大小。如果filter_size是一个tuple,它必须包含两个整数(filter_size_H, filter_size_W)。否则,过滤器将是一个方阵。
- **stride** (int|tuple) - 步长大小。如果stride是一个元组,它必须包含两个整数(stride_H、stride_W)。否则,stride_H = stride_W = stride。默认:stride = 1。 - **stride** (int|tuple) - 步长大小。如果stride是一个元组,它必须包含两个整数(stride_H、stride_W)。否则,stride_H = stride_W = stride。默认:stride = 1。
- **padding** (int|tuple) - 填充大小。如果padding是一个元组,它可以包含两个整数(padding_H, padding_W),这意味着padding_up = padding_down = padding_H和padding_left = padding_right = padding_W。或者它可以使用(padding_up, padding_left, padding_down, padding_right)来指示四个方向的填充。否则,标量填充意味着padding_up = padding_down = padding_left = padding_right = padding Default: padding = 0。 - **padding** (int|tuple) - 填充大小。如果padding是一个元组,它可以包含两个整数(padding_H, padding_W),这意味着padding_up = padding_down = padding_H和padding_left = padding_right = padding_W。或者它可以使用(padding_up, padding_left, padding_down, padding_right)来指示四个方向的填充。否则,标量填充意味着padding_up = padding_down = padding_left = padding_right = padding Default: padding = 0。
- **input_image_size** (Variable) - 输入包含图像的实际大小。它的维度为[batchsize,2]。该参数可有可无,是用于batch推理 - **input_image_size** (Variable) - 输入包含图像的实际大小。它的维度为[batchsize,2]。该参数可有可无,是用于batch上的预测
- **out_stride** (int|tuple) - 通过CNN缩放图像。它可有可无,只有当input_image_size不为空时才有效。如果out_stride是tuple,它必须包含(out_stride_H, out_stride_W),否则,out_stride_H = out_stride_W = out_stride。 - **out_stride** (int|tuple) - 通过CNN缩放图像。它可有可无,只有当input_image_size不为空时才有效。如果out_stride是tuple,它必须包含(out_stride_H, out_stride_W),否则,out_stride_H = out_stride_W = out_stride。
- **name** (int) - 该layer的名称,可以忽略。 - **name** (int) - 该layer的名称,可以忽略。
...@@ -6082,7 +6082,7 @@ pooling2d操作符根据 ``input`` , 池化类型 ``pool_type`` , 池化核 ...@@ -6082,7 +6082,7 @@ pooling2d操作符根据 ``input`` , 池化类型 ``pool_type`` , 池化核
参数: 参数:
- **input** (Variable) - 池化操作的输入张量。输入张量格式为NCHW,N为批尺寸,C是通道数,H是特征高度,W是特征宽度 - **input** (Variable) - 池化操作的输入张量。输入张量格式为NCHW,N为批尺寸,C是通道数,H是特征高度,W是特征宽度
- **pool_size** (int|list|tuple) - 池化窗口的大小。如果它是一个元组或列表,它必须包含两个整数值, (pool_size_Height, pool_size_Width)。否则它应是一个整数的平方值 - **pool_size** (int|list|tuple) - 池化核的大小。如果它是一个元组或列表,它必须包含两个整数值, (pool_size_Height, pool_size_Width)。若为一个整数,则它的平方值将作为池化核大小,比如若pool_size=2, 则池化核大小为2x2
- **pool_type** (string) - 池化类型,可以是“max”对应max-pooling,“avg”对应average-pooling - **pool_type** (string) - 池化类型,可以是“max”对应max-pooling,“avg”对应average-pooling
- **pool_stride** (int|list|tuple) - 池化层的步长。如果它是一个元组或列表,它将包含两个整数,(pool_stride_Height, pool_stride_Width)。否则它是一个整数的平方值。 - **pool_stride** (int|list|tuple) - 池化层的步长。如果它是一个元组或列表,它将包含两个整数,(pool_stride_Height, pool_stride_Width)。否则它是一个整数的平方值。
- **pool_padding** (int|list|tuple) - 填充大小。如果它是一个元组或列表,它必须包含两个整数值,(pool_padding_on_Height, pool_padding_on_Width)。否则它是一个整数的平方值。 - **pool_padding** (int|list|tuple) - 填充大小。如果它是一个元组或列表,它必须包含两个整数值,(pool_padding_on_Height, pool_padding_on_Width)。否则它是一个整数的平方值。
...@@ -6215,8 +6215,13 @@ prelu ...@@ -6215,8 +6215,13 @@ prelu
返回类型: 变量(Variable) 返回类型: 变量(Variable)
**代码示例:**
.. code-block:: python
x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
mode = 'channel'
output = fluid.layers.prelu(x,mode)
.. _cn_api_fluid_layers_psroi_pool: .. _cn_api_fluid_layers_psroi_pool:
...@@ -8155,7 +8160,7 @@ sigmoid_cross_entropy_with_logits ...@@ -8155,7 +8160,7 @@ sigmoid_cross_entropy_with_logits
.. py:function:: paddle.fluid.layers.sigmoid_cross_entropy_with_logits(x, label, name=None) .. py:function:: paddle.fluid.layers.sigmoid_cross_entropy_with_logits(x, label, name=None)
在类别不相互独立的分类任务中,该函数可以衡量按元素顺序的可能性误差。可以这么认为,为单一数据点预测标签,它们之间不是完全互斥的关系。例如,一篇新闻文章可以同时关于政治,科技,体育或者同时不包含这些内容。 在类别不相互独立的分类任务中,该函数可以衡量按元素的可能性误差。可以这么认为,为单一数据点预测标签,它们之间不是完全互斥的关系。例如,一篇新闻文章可以同时关于政治,科技,体育或者同时不包含这些内容。
逻辑loss可通过下式计算: 逻辑loss可通过下式计算:
...@@ -8177,7 +8182,7 @@ sigmoid_cross_entropy_with_logits ...@@ -8177,7 +8182,7 @@ sigmoid_cross_entropy_with_logits
.. math:: .. math::
loss = max(X, 0) - X * Labels + log(1 + exp(-|X|)) loss = max(X, 0) - X * Labels + log(1 + exp(-|X|))
输入 ``X`` 和 ``label`` 都可以携带LoD信息。输出仅采用输入 ``X`` 的LoD。 输入 ``X`` 和 ``label`` 都可以携带LoD信息。然而输出仅采用输入 ``X`` 的LoD。
...@@ -9207,11 +9212,13 @@ abs ...@@ -9207,11 +9212,13 @@ abs
.. py:function:: paddle.fluid.layers.abs(x, name=None) .. py:function:: paddle.fluid.layers.abs(x, name=None)
绝对值运算激活函数。
.. math::
out = |x|
参数: 参数:
- **x** - abs运算符的输入 - **x** - abs运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Abs运算符的输出。 返回: Abs运算符的输出。
...@@ -9232,10 +9239,15 @@ ceil ...@@ -9232,10 +9239,15 @@ ceil
.. py:function:: paddle.fluid.layers.ceil(x, name=None) .. py:function:: paddle.fluid.layers.ceil(x, name=None)
天花板运算激活函数。
.. math::
out = \left \lceil x \right \rceil
参数: 参数:
- **x** - Ceil运算符的输入 - **x** - Ceil运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Ceil运算符的输出。 返回: Ceil运算符的输出。
...@@ -9255,11 +9267,17 @@ cos ...@@ -9255,11 +9267,17 @@ cos
.. py:function:: paddle.fluid.layers.cos(x, name=None) .. py:function:: paddle.fluid.layers.cos(x, name=None)
Cosine余弦激活函数。
.. math::
out = cos(x)
参数: 参数:
- **x** - cos运算符的输入 - **x** - cos运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Cos运算符的输出 返回: Cos运算符的输出
...@@ -9311,10 +9329,14 @@ exp ...@@ -9311,10 +9329,14 @@ exp
.. py:function:: paddle.fluid.layers.exp(x, name=None) .. py:function:: paddle.fluid.layers.exp(x, name=None)
Exp激活函数(Exp指以自然常数e为底的指数运算)。
.. math::
out = e^x
参数: 参数:
- **x** - Exp运算符的输入 - **x** - Exp运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Exp算子的输出 返回: Exp算子的输出
...@@ -9335,10 +9357,15 @@ floor ...@@ -9335,10 +9357,15 @@ floor
.. py:function:: paddle.fluid.layers.floor(x, name=None) .. py:function:: paddle.fluid.layers.floor(x, name=None)
地板运算激活函数。
.. math::
out = \left \lfloor x \right \rfloor
参数: 参数:
- **x** - Floor运算符的输入 - **x** - Floor运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Floor运算符的输出。 返回: Floor运算符的输出。
...@@ -9398,11 +9425,16 @@ logsigmoid ...@@ -9398,11 +9425,16 @@ logsigmoid
.. py:function:: paddle.fluid.layers.logsigmoid(x, name=None) .. py:function:: paddle.fluid.layers.logsigmoid(x, name=None)
Logsigmoid激活函数。
.. math::
out = \log \frac{1}{1 + e^{-x}}
参数: 参数:
- **x** - LogSigmoid运算符的输入 - **x** - LogSigmoid运算符的输入
- **use_mkldnn** (bool) - (默认为False)仅在 ``mkldnn`` 内核中使用
返回: LogSigmoid运算符的输出 返回: LogSigmoid运算符的输出
...@@ -9422,10 +9454,14 @@ reciprocal ...@@ -9422,10 +9454,14 @@ reciprocal
.. py:function:: paddle.fluid.layers.reciprocal(x, name=None) .. py:function:: paddle.fluid.layers.reciprocal(x, name=None)
Reciprocal(取倒数)激活函数
.. math::
out = \frac{1}{x}
参数: 参数:
- **x** - Ceil运算符的输入 - **x** - Ceil运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Reciprocal运算符的输出。 返回: Reciprocal运算符的输出。
...@@ -9448,10 +9484,15 @@ round ...@@ -9448,10 +9484,15 @@ round
.. py:function:: paddle.fluid.layers.round(x, name=None) .. py:function:: paddle.fluid.layers.round(x, name=None)
Round取整激活函数。
.. math::
out = [x]
参数: 参数:
- **x** - Ceil运算符的输入 - **x** - Ceil运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Round运算符的输出。 返回: Round运算符的输出。
...@@ -9471,12 +9512,14 @@ sigmoid ...@@ -9471,12 +9512,14 @@ sigmoid
.. py:function:: paddle.fluid.layers.sigmoid(x, name=None) .. py:function:: paddle.fluid.layers.sigmoid(x, name=None)
sigmoid激活函数
.. math::
out = \frac{1}{1 + e^{-x}}
参数: 参数:
- **x** - Sigmoid运算符的输入 - **x** - Sigmoid运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Sigmoid运算输出. 返回: Sigmoid运算输出.
...@@ -9496,10 +9539,15 @@ sin ...@@ -9496,10 +9539,15 @@ sin
.. py:function:: paddle.fluid.layers.sin(x, name=None) .. py:function:: paddle.fluid.layers.sin(x, name=None)
正弦sine激活函数。
.. math::
out = sin(x)
参数: 参数:
- **x** - sin运算符的输入 - **x** - sin运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Sin运算符的输出。 返回: Sin运算符的输出。
...@@ -9520,9 +9568,13 @@ softplus ...@@ -9520,9 +9568,13 @@ softplus
.. py:function:: paddle.fluid.layers.softplus(x,name=None) .. py:function:: paddle.fluid.layers.softplus(x,name=None)
softplus激活函数。
.. math::
out = \ln(1 + e^{x})
参数: 参数:
- **x** : Softplus操作符的输入 - **x** : Softplus操作符的输入
- **use_mkldnn** (bool, 默认false) - 仅在mkldnn核中使用
返回:Softplus操作后的结果 返回:Softplus操作后的结果
...@@ -9572,9 +9624,15 @@ softsign ...@@ -9572,9 +9624,15 @@ softsign
.. py:function:: Paddle.fluid.layers.softsign(x,name=None) .. py:function:: Paddle.fluid.layers.softsign(x,name=None)
softsign激活函数。
.. math::
out = \frac{x}{1 + |x|}
参数: 参数:
- **x** : Softsign操作符的输入 - **x** : Softsign操作符的输入
- **use_mkldnn** (bool, 默认false) - 仅在mkldnn核中使用
返回:Softsign操作后的结果 返回:Softsign操作后的结果
...@@ -9593,10 +9651,13 @@ sqrt ...@@ -9593,10 +9651,13 @@ sqrt
.. py:function:: paddle.fluid.layers.sqrt(x, name=None) .. py:function:: paddle.fluid.layers.sqrt(x, name=None)
算数平方根激活函数。
.. math::
out = \sqrt{x}
参数: 参数:
- **x** - Sqrt运算符的输入 - **x** - Sqrt运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Sqrt算子的输出。 返回: Sqrt算子的输出。
...@@ -9617,9 +9678,14 @@ square ...@@ -9617,9 +9678,14 @@ square
.. py:function:: paddle.fluid.layers.square(x,name=None) .. py:function:: paddle.fluid.layers.square(x,name=None)
取平方激活函数。
.. math::
out = x^2
参数: 参数:
- **x** : 平方操作符的输入 - **x** : 平方操作符的输入
- **use_mkldnn** (bool, 默认false) 仅在mkldnn核中使用
返回:平方后的结果 返回:平方后的结果
...@@ -9640,10 +9706,15 @@ tanh ...@@ -9640,10 +9706,15 @@ tanh
tanh 激活函数。
.. math::
out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
参数: 参数:
- **x** - Tanh运算符的输入 - **x** - Tanh运算符的输入
- **use_mkldnn** (bool) - (默认为false)仅在 ``mkldnn`` 内核中使用
返回: Tanh算子的输出。 返回: Tanh算子的输出。
...@@ -9664,10 +9735,13 @@ tanh_shrink ...@@ -9664,10 +9735,13 @@ tanh_shrink
.. py:function:: paddle.fluid.layers.tanh_shrink(x, name=None) .. py:function:: paddle.fluid.layers.tanh_shrink(x, name=None)
tanh_shrink激活函数。
.. math::
out = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
参数: 参数:
- **x** - TanhShrink运算符的输入 - **x** - TanhShrink运算符的输入
- **use_mkldnn** (bool)- (默认为false)仅在 ``mkldnn`` 内核中使用
返回: tanh_shrink算子的输出 返回: tanh_shrink算子的输出
...@@ -10127,7 +10201,7 @@ fill_constant_batch_size_like ...@@ -10127,7 +10201,7 @@ fill_constant_batch_size_like
该功能创建一个张量,含有具体的shape,dtype和batch尺寸。并用 ``Value`` 中提供的常量初始化该张量。该批尺寸从输入张量中获取。它还将stop_gradient设置为True. 该功能创建一个张量,含有具体的shape,dtype和batch尺寸。并用 ``Value`` 中提供的常量初始化该张量。该批尺寸从输入张量中获取。它还将stop_gradient设置为True.
参数: 参数:
- **input** (Variable)-张量,其input_dim_idx个维具体指示batch_size - **input** (Variable)-张量,其第input_dim_idx维可指定batch_size
- **shape** (INTS)-输出的形状 - **shape** (INTS)-输出的形状
- **dtype** (INT)-可以为numpy.dtype。输出数据类型。默认为float32 - **dtype** (INT)-可以为numpy.dtype。输出数据类型。默认为float32
- **value** (FLOAT)-默认为0.将要被填充的值 - **value** (FLOAT)-默认为0.将要被填充的值
...@@ -10711,21 +10785,21 @@ anchor_generator ...@@ -10711,21 +10785,21 @@ anchor_generator
**Anchor generator operator** **Anchor generator operator**
快速RCNN算法生成锚,输入的每一位产生N个锚,N=size(anchor_sizes)*size(aspect_ratios)。生成锚的顺序首先是aspect_ratios循环,然后是anchor_sizes循环。 Faster RCNN算法生成anchor,输入的每一位产生N个anchor,N=size(anchor_sizes)*size(aspect_ratios)。生成anchor的顺序首先是aspect_ratios循环,然后是anchor_sizes循环。
参数: 参数:
- **input** (Variable) - 输入特征图,格式为NCHW - **input** (Variable) - 输入特征图,格式为NCHW
- **anchor_sizes** (list|tuple|float) - 生成锚的锚大小,以绝对像素的形式表示,例如:[64.,128.,256.,512.]若锚的大小为64,则意味着这个锚的面积等于64**2。 - **anchor_sizes** (list|tuple|float) - 生成anchor的anchor大小,以绝对像素的形式表示,例如:[64.,128.,256.,512.]若anchor的大小为64,则意味着这个anchor的面积等于64**2。
- **aspect_ratios** (list|tuple|float) - 生成的高宽比,例如[0.5,1.0,2.0] - **aspect_ratios** (list|tuple|float) - 生成anchor的高宽比,例如[0.5,1.0,2.0]
- **variance** (list|tuple) - 变量,在框回归delta中使用。默认:[0.1,0.1,0.2,0.2] - **variance** (list|tuple) - 变量,在框回归delta中使用。默认:[0.1,0.1,0.2,0.2]
- **stride** (list|tuple) - 在宽度和高度方向上的步长,比如[16.0,16.0] - **stride** (list|tuple) - anchor在宽度和高度方向上的步长,比如[16.0,16.0]
- **offset** (float) - 先验框的中心位移。默认:0.5 - **offset** (float) - 先验框的中心位移。默认:0.5
- **name** (str) - 先验框操作符名称。默认:None - **name** (str) - 先验框操作符名称。默认:None
返回: 返回:
- Anchors(Varibale): 输出anchor,布局[H,W,num_anchors,4] , ``H`` 是输入的高度, ``W`` 是输入的宽度, ``num_priors`` 是输入每位的框数,每个anchor格式(未归一化)为(xmin,ymin,xmax,ymax) - Anchors(Varibale): 输出anchor,布局[H,W,num_anchors,4] , ``H`` 是输入的高度, ``W`` 是输入的宽度, ``num_priors`` 是输入每位的框数,每个anchor格式(未归一化)为(xmin,ymin,xmax,ymax)
- Variances(Variable): 的扩展变量布局为 [H,W,num_priors,4]。 ``H`` 是输入的高度, ``W`` 是输入的宽度, ``num_priors`` 是输入每个位置的框数,每个变量的格式为(xcenter,ycenter,w,h)。 - Variances(Variable): anchor的扩展变量布局为 [H,W,num_priors,4]。 ``H`` 是输入的高度, ``W`` 是输入的宽度, ``num_priors`` 是输入每个位置的框数,每个变量的格式为(xcenter,ycenter,w,h)。
返回类型:anchor(Variable) 返回类型:anchor(Variable)
...@@ -11246,7 +11320,7 @@ generate_proposals ...@@ -11246,7 +11320,7 @@ generate_proposals
生成proposal的Faster-RCNN 生成proposal的Faster-RCNN
该操作根据每个框为foreground(前景)对象的概率,并且通过锚(anchors)来计算这些框,进而提出RoI。Bbox_deltais和一个objects的分数作为是RPN的输出。最终 ``proposals`` 可用于训练检测网络。 该操作根据每个框为foreground(前景)对象的概率,并且通过anchors来计算这些框,进而提出RoI。Bbox_deltais和一个objects的分数作为是RPN的输出。最终 ``proposals`` 可用于训练检测网络。
为了生成 ``proposals`` ,此操作执行以下步骤: 为了生成 ``proposals`` ,此操作执行以下步骤:
...@@ -11574,7 +11648,7 @@ rpn_target_assign ...@@ -11574,7 +11648,7 @@ rpn_target_assign
(ii) 具有IoU重叠的anchors高于带有任何真实框(ground-truth box)的rpn_positive_overlap0(0.7)。 (ii) 具有IoU重叠的anchors高于带有任何真实框(ground-truth box)的rpn_positive_overlap0(0.7)。
请注意,单个真实框(ground-truth box)可以为多个anchors分配正标签。对于所有真实框(ground-truth box),非正向是指其IoU比率低于rpn_negative_overlap(0.3)。既不是正也不是负的anchors对训练目标没有价值。回归目标是与positive anchors相关联而编码的图片真实框。 请注意,单个真实框(ground-truth box)可以为多个anchors分配正标签。对于所有真实框(ground-truth box),非正向anchor是指其IoU比率低于rpn_negative_overlap(0.3)。既不是正也不是负的anchors对训练目标没有价值。回归目标是与positive anchors相关联而编码的图片真实框。
参数: 参数:
- **bbox_pred** (Variable)- 是一个shape为[N,M,4]的3-D Tensor,表示M个边界框的预测位置。N是批量大小,每个边界框有四个坐标值,即[xmin,ymin,xmax,ymax]。 - **bbox_pred** (Variable)- 是一个shape为[N,M,4]的3-D Tensor,表示M个边界框的预测位置。N是批量大小,每个边界框有四个坐标值,即[xmin,ymin,xmax,ymax]。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册