From c3912ac253d6299fca2a0905b192de0580ff6e55 Mon Sep 17 00:00:00 2001 From: Yiqun Liu Date: Mon, 23 Sep 2019 15:21:23 +0800 Subject: [PATCH] Update chinese doc of layers.sums. (#1234) * Update chinese doc of layers.sums. test=develop test=document_preview * Add more examples and more detail imformation of output. test=develop test=document_preview * Refine the format. test=develop test=document_preview * Refine the comment in example codes. test=develop test=document_preview * Refine the introduce of out. test=develop test=document_preview * Refine the introduction of out. test=develop test=document_preview --- doc/fluid/api_cn/layers_cn/sums_cn.rst | 59 ++++++++++++++------------ 1 file changed, 33 insertions(+), 26 deletions(-) diff --git a/doc/fluid/api_cn/layers_cn/sums_cn.rst b/doc/fluid/api_cn/layers_cn/sums_cn.rst index 5bc885ea8..8db8f0b5a 100644 --- a/doc/fluid/api_cn/layers_cn/sums_cn.rst +++ b/doc/fluid/api_cn/layers_cn/sums_cn.rst @@ -5,43 +5,50 @@ sums .. py:function:: paddle.fluid.layers.sums(input,out=None) -该函数对输入进行求和,并返回求和结果作为输出。 +该OP计算多个输入Tensor逐个元素相加的和。 -参数: - - **input** (Variable|list)-输入张量,有需要求和的元素 - - **out** (Variable|None)-输出参数。求和结果。默认:None - -返回:输入的求和。和参数'out'等同 - -返回类型:变量(Variable) - -**代码示例**: +- 示例:3个Tensor求和 .. code-block:: python - import paddle.fluid as fluid - - # sum of several tensors - a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1) - a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2) - a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3) - sums = fluid.layers.sums(input=[a0, a1, a2]) + 输入: + x0.shape = [2, 3] + x0.data = [[1., 2., 3.], + [4., 5., 6.]] + x1.shape = [2, 3] + x1.data = [[10., 20., 30.], + [40., 50., 60.]] + x2.shape = [2, 3] + x2.data = [[100., 200., 300.], + [400., 500., 600.]] - # sum of a tensor array - array = fluid.layers.create_array('int64') - i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True) - fluid.layers.array_write(a0, array=array, i=i) - i = fluid.layers.increment(x=i) - fluid.layers.array_write(a1, array=array, i=i) - i = fluid.layers.increment(x=i) - fluid.layers.array_write(a2, array=array, i=i) - sums = fluid.layers.sums(input=array) + 输出: + out.shape = [2, 3] + out.data = [[111., 222., 333.], + [444., 555., 666.]] +参数: + - **input** (list) - 多个维度相同的Tensor组成的元组。支持的数据类型:float32,float64,int32,int64。 + - **out** (Variable,可选) - 指定求和的结果Tensor,可以是程序中已经创建的任何Variable。默认值为None,此时将创建新的Variable来保存输出结果。 +返回:输入的和,数据类型和维度与输入Tensor相同。若 ``out`` 为 ``None`` ,返回值是一个新的Variable;否则,返回值就是 ``out`` 。 +返回类型:Variable +**代码示例**: +.. code-block:: python + + import paddle.fluid as fluid + x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1) + x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2) + x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3) + x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0) + # 多个Tensor求和,结果保存在一个新建的Variable sum0,即sum0=x0+x1+x2,值为[[6, ..., 6], ..., [6, ..., 6]] + sum0 = fluid.layers.sums(input=[x0, x1, x2]) + # 多个Tensor求和,sum1和x3是同一个Variable,相当于x3=x0+x1+x2,值为[[6, ..., 6], ..., [6, ..., 6]] + sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3) -- GitLab