From b23d41ca5e711356ce4892da1ac6333456d62d67 Mon Sep 17 00:00:00 2001 From: LielinJiang <50691816+LielinJiang@users.noreply.github.com> Date: Fri, 11 Sep 2020 20:46:14 +0800 Subject: [PATCH] Add some hapi cn docs (#2588) * add some hapi cn docs --- .../api/paddle/hapi/callbacks/Callback_cn.rst | 26 +++++++++ .../hapi/callbacks/ModelCheckpoint_cn.rst | 36 ++++++++++++ .../hapi/callbacks/ProgBarLogger_cn.rst | 36 ++++++++++++ doc/paddle/api/paddle/hapi/summary_cn.rst | 58 +++++++++++++++++++ .../utils/get_weights_path_from_url_cn.rst | 24 ++++++++ .../vision/datasets/DatasetFolder_cn.rst | 54 +++++++++++++++++ .../paddle/vision/datasets/ImageFolder_cn.rst | 50 ++++++++++++++++ .../api/paddle/vision/models/LeNet_cn.rst | 26 +++++++++ .../paddle/vision/models/MobileNetV1_cn.rst | 29 ++++++++++ .../paddle/vision/models/MobileNetV2_cn.rst | 29 ++++++++++ .../api/paddle/vision/models/ResNet_cn.rst | 33 +++++++++++ .../api/paddle/vision/models/VGG_cn.rst | 33 +++++++++++ .../paddle/vision/models/mobilenet_v1_cn.rst | 35 +++++++++++ .../paddle/vision/models/mobilenet_v2_cn.rst | 35 +++++++++++ .../api/paddle/vision/models/resnet101_cn.rst | 31 ++++++++++ .../api/paddle/vision/models/resnet152_cn.rst | 31 ++++++++++ .../api/paddle/vision/models/resnet18_cn.rst | 31 ++++++++++ .../api/paddle/vision/models/resnet34_cn.rst | 31 ++++++++++ .../api/paddle/vision/models/resnet50_cn.rst | 31 ++++++++++ .../api/paddle/vision/models/vgg11_cn.rst | 32 ++++++++++ .../api/paddle/vision/models/vgg13_cn.rst | 32 ++++++++++ .../api/paddle/vision/models/vgg16_cn.rst | 32 ++++++++++ .../api/paddle/vision/models/vgg19_cn.rst | 32 ++++++++++ 23 files changed, 787 insertions(+) create mode 100644 doc/paddle/api/paddle/hapi/callbacks/Callback_cn.rst create mode 100644 doc/paddle/api/paddle/hapi/callbacks/ModelCheckpoint_cn.rst create mode 100644 doc/paddle/api/paddle/hapi/callbacks/ProgBarLogger_cn.rst create mode 100644 doc/paddle/api/paddle/hapi/summary_cn.rst create mode 100644 doc/paddle/api/paddle/utils/get_weights_path_from_url_cn.rst create mode 100644 doc/paddle/api/paddle/vision/datasets/DatasetFolder_cn.rst create mode 100644 doc/paddle/api/paddle/vision/datasets/ImageFolder_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/LeNet_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/MobileNetV1_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/MobileNetV2_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/ResNet_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/VGG_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/mobilenet_v1_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/mobilenet_v2_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/resnet101_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/resnet152_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/resnet18_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/resnet34_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/resnet50_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/vgg11_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/vgg13_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/vgg16_cn.rst create mode 100644 doc/paddle/api/paddle/vision/models/vgg19_cn.rst diff --git a/doc/paddle/api/paddle/hapi/callbacks/Callback_cn.rst b/doc/paddle/api/paddle/hapi/callbacks/Callback_cn.rst new file mode 100644 index 000000000..45eadc4c6 --- /dev/null +++ b/doc/paddle/api/paddle/hapi/callbacks/Callback_cn.rst @@ -0,0 +1,26 @@ +.. _cn_api_paddle_callbacks_Callback: + +Callback +------------------------------- + +.. py:class:: paddle.callbacks.Callback() + + ``Callback`` 是一个基类,用于实现用户自定义的callback。 + +**代码示例**: + +.. code-block:: python + + import paddle + + # build a simple model checkpoint callback + class ModelCheckpoint(paddle.callbacks.Callback): + def __init__(self, save_freq=1, save_dir=None): + self.save_freq = save_freq + self.save_dir = save_dir + + def on_epoch_end(self, epoch, logs=None): + if self.model is not None and epoch % self.save_freq == 0: + path = '{}/{}'.format(self.save_dir, epoch) + print('save checkpoint at {}'.format(path)) + self.model.save(path) \ No newline at end of file diff --git a/doc/paddle/api/paddle/hapi/callbacks/ModelCheckpoint_cn.rst b/doc/paddle/api/paddle/hapi/callbacks/ModelCheckpoint_cn.rst new file mode 100644 index 000000000..a8b304a6d --- /dev/null +++ b/doc/paddle/api/paddle/hapi/callbacks/ModelCheckpoint_cn.rst @@ -0,0 +1,36 @@ +.. _cn_api_paddle_callbacks_ModelCheckpoint: + +ModelCheckpoint +------------------------------- + +.. py:class:: paddle.callbacks.ModelCheckpoint(save_freq=1, save_dir=None) + + ``ModelCheckpoint`` 是一个日志回调类。 + +参数: + - **save_freq** (int,可选) - 间隔多少个epoch保存模型。默认值:1。 + - **save_dir** (int,可选) - 保存模型的文件夹。如果不设定,将不会保存模型。默认值:None。 + + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.static import InputSpec + + inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] + labels = [InputSpec([None, 1], 'int64', 'label')] + + train_dataset = paddle.vision.datasets.MNIST(mode='train') + + model = paddle.Model(paddle.vision.LeNet(classifier_activation=None), + inputs, labels) + + optim = paddle.optimizer.Adam(0.001) + model.prepare(optimizer=optim, + loss=paddle.nn.CrossEntropyLoss(), + metrics=paddle.metric.Accuracy()) + + callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp') + model.fit(train_dataset, batch_size=64, callbacks=callback) \ No newline at end of file diff --git a/doc/paddle/api/paddle/hapi/callbacks/ProgBarLogger_cn.rst b/doc/paddle/api/paddle/hapi/callbacks/ProgBarLogger_cn.rst new file mode 100644 index 000000000..e90cc940f --- /dev/null +++ b/doc/paddle/api/paddle/hapi/callbacks/ProgBarLogger_cn.rst @@ -0,0 +1,36 @@ +.. _cn_api_paddle_callbacks_ProgBarLogger: + +ProgBarLogger +------------------------------- + +.. py:class:: paddle.callbacks.ProgBarLogger(log_freq=1, verbose=2) + + ``ProgBarLogger`` 是一个日志回调类。 + +参数: + - **log_freq** (int,可选) - 损失值和指标打印的频率。默认值:1。 + - **verbose** (int,可选) - 打印信息的模式。设置为0时,不打印信息;设置为1时,使用进度条的形式打印信息;是指为2时,使用行的形式打印信息。默认值:2。 + + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.static import InputSpec + + inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] + labels = [InputSpec([None, 1], 'int64', 'label')] + + train_dataset = paddle.vision.datasets.MNIST(mode='train') + + model = paddle.Model(paddle.vision.LeNet(classifier_activation=None), + inputs, labels) + + optim = paddle.optimizer.Adam(0.001) + model.prepare(optimizer=optim, + loss=paddle.nn.CrossEntropyLoss(), + metrics=paddle.metric.Accuracy()) + + callback = paddle.callbacks.ProgBarLogger(log_freq=10) + model.fit(train_dataset, batch_size=64, callbacks=callback) \ No newline at end of file diff --git a/doc/paddle/api/paddle/hapi/summary_cn.rst b/doc/paddle/api/paddle/hapi/summary_cn.rst new file mode 100644 index 000000000..1505fba3c --- /dev/null +++ b/doc/paddle/api/paddle/hapi/summary_cn.rst @@ -0,0 +1,58 @@ +.. _cn_api_paddle_summary: + +summary +------------------------------- + +.. py:function:: paddle.summary(net, input_size, batch_size=None, dtypes=None) + + ``summary`` 函数能够打印网络的基础结构和参数信息。 + +参数: + - **net** (Layer) - 网络实例,必须是 ``Layer`` 的子类。 + - **input_size** (tuple|InputSpec|list[tuple|InputSpec) - 输入张量的大小。如果网络只有一个输入,那么该值需要设定为tuple或InputSpec。如果模型有多个输入。那么该值需要设定为list[tuple|InputSpec],包含每个输入的shape。 + - **batch_size** (int,可选) - 输入张量的批大小。默认值:None。 + - **dtypes** (str,可选) - 输入张量的数据类型,如果没有给定,默认使用 ``float32`` 类型。默认值:None。 + +返回:字典,包含了总的参数量和总的可训练的参数量。 + +**代码示例**: + +.. code-block:: python + + import paddle + import paddle.nn as nn + + class LeNet(nn.Layer): + def __init__(self, num_classes=10): + super(LeNet, self).__init__() + self.num_classes = num_classes + self.features = nn.Sequential( + nn.Conv2d( + 1, 6, 3, stride=1, padding=1), + nn.ReLU(), + nn.MaxPool2d(2, 2), + nn.Conv2d( + 6, 16, 5, stride=1, padding=0), + nn.ReLU(), + nn.MaxPool2d(2, 2)) + + if num_classes > 0: + self.fc = nn.Sequential( + nn.Linear(400, 120), + nn.Linear(120, 84), + nn.Linear( + 84, 10)) + + def forward(self, inputs): + x = self.features(inputs) + + if self.num_classes > 0: + x = paddle.flatten(x, 1) + x = self.fc(x) + return x + + lenet = LeNet() + + params_info = paddle.summary(lenet, (1, 28, 28)) + print(params_info) + diff --git a/doc/paddle/api/paddle/utils/get_weights_path_from_url_cn.rst b/doc/paddle/api/paddle/utils/get_weights_path_from_url_cn.rst new file mode 100644 index 000000000..ce9fd2e01 --- /dev/null +++ b/doc/paddle/api/paddle/utils/get_weights_path_from_url_cn.rst @@ -0,0 +1,24 @@ +.. _cn_api_paddle_utils_download_get_weights_path_from_url: + +get_weights_path_from_url +------------------------------- + +.. py:function:: paddle.utils.download.get_weights_path_from_url(url, md5sum=None) + + 从 ``WEIGHT_HOME`` 文件夹获取权重,如果不存在,就从url下载 + +参数: + - **url** (str) - 下载的链接。 + - **md5sum** (str,可选) - 下载文件的md5值。默认值:None。 + +返回:权重的本地路径。 + + +**代码示例**: + +.. code-block:: python + + from paddle.utils.download import get_weights_path_from_url + + resnet18_pretrained_weight_url = 'https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams' + local_weight_path = get_weights_path_from_url(resnet18_pretrained_weight_url) diff --git a/doc/paddle/api/paddle/vision/datasets/DatasetFolder_cn.rst b/doc/paddle/api/paddle/vision/datasets/DatasetFolder_cn.rst new file mode 100644 index 000000000..89259a14d --- /dev/null +++ b/doc/paddle/api/paddle/vision/datasets/DatasetFolder_cn.rst @@ -0,0 +1,54 @@ +.. _cn_api_paddle_vision_datasets_DatasetFolder: + +DatasetFolder +------------------------------- + +.. py:class:: paddle.vision.datasets.DatasetFolder(root, loader=None, extensions=None, transform=None, is_valid_file=None) + + 一种通用的数据加载方式,当输入以如下的格式存放时: + root/class_a/1.ext + root/class_a/2.ext + root/class_a/3.ext + + root/class_b/123.ext + root/class_b/456.ext + root/class_b/789.ext + +参数: + - **root** (str) - 根目录路径。 + - **loader** (callable,可选) - 可以加载数据路径的一个函数,如果该值没有设定,默认使用 ``cv2.imread`` 。默认值:None。 + - **extensions** (tuple[str],可选) - 允许的数据后缀列表,如果该值没有设定,默认使用 ``('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')`` 。默认值:None。 + - **transform** (callable,可选) - 数据增强函数。默认值:None。 + - **is_valid_file** (callable,可选) - 根据每条数据的路径来判断是否合法的一个函数。默认值:None。 + + +**代码示例**: + +.. code-block:: python + + import os + import cv2 + import tempfile + import shutil + import numpy as np + from paddle.vision.datasets import DatasetFolder + + def make_fake_dir(): + data_dir = tempfile.mkdtemp() + + for i in range(2): + sub_dir = os.path.join(data_dir, 'class_' + str(i)) + if not os.path.exists(sub_dir): + os.makedirs(sub_dir) + for j in range(2): + fake_img = (np.random.random((32, 32, 3)) * 255).astype('uint8') + cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img) + return data_dir + + temp_dir = make_fake_dir() + data_folder = DatasetFolder(temp_dir) + + for items in data_folder: + break + + shutil.rmtree(temp_dir) diff --git a/doc/paddle/api/paddle/vision/datasets/ImageFolder_cn.rst b/doc/paddle/api/paddle/vision/datasets/ImageFolder_cn.rst new file mode 100644 index 000000000..37571e124 --- /dev/null +++ b/doc/paddle/api/paddle/vision/datasets/ImageFolder_cn.rst @@ -0,0 +1,50 @@ +.. _cn_api_paddle_vision_datasets_ImageFolder: + +ImageFolder +------------------------------- + +.. py:class:: paddle.vision.datasets.ImageFolder(root, loader=None, extensions=None, transform=None, is_valid_file=None) + + 一种通用的数据加载方式,当输入以如下的格式存放时: + root/1.ext + root/2.ext + root/sub_dir/3.ext + +参数: + - **root** (str) - 根目录路径。 + - **loader** (callable,可选) - 可以加载数据路径的一个函数,如果该值没有设定,默认使用 ``cv2.imread`` 。默认值:None。 + - **extensions** (tuple[str],可选) - 允许的数据后缀列表,如果该值没有设定,默认使用 ``('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')`` 。默认值:None。 + - **transform** (callable,可选) - 数据增强函数。默认值:None。 + - **is_valid_file** (callable,可选) - 根据每条数据的路径来判断是否合法的一个函数。默认值:None。 + + +**代码示例**: + +.. code-block:: python + + import os + import cv2 + import tempfile + import shutil + import numpy as np + from paddle.vision.datasets import ImageFolder + + def make_fake_dir(): + data_dir = tempfile.mkdtemp() + + for i in range(2): + sub_dir = os.path.join(data_dir, 'class_' + str(i)) + if not os.path.exists(sub_dir): + os.makedirs(sub_dir) + for j in range(2): + fake_img = (np.random.random((32, 32, 3)) * 255).astype('uint8') + cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img) + return data_dir + + temp_dir = make_fake_dir() + data_folder = ImageFolder(temp_dir) + + for items in data_folder: + break + + shutil.rmtree(temp_dir) diff --git a/doc/paddle/api/paddle/vision/models/LeNet_cn.rst b/doc/paddle/api/paddle/vision/models/LeNet_cn.rst new file mode 100644 index 000000000..2aa28af12 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/LeNet_cn.rst @@ -0,0 +1,26 @@ +.. _cn_api_paddle_vision_models_LeNet: + +LeNet +------------------------------- + +.. py:class:: paddle.vision.models.LeNet(num_classes=10) + + LeNet模型,来自论文`"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_。 + +参数: + - **num_classes** (int,可选) - 最后一个全连接层输出的维度。默认值:10。 + + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import LeNet + + model = LeNet() + + x = paddle.rand([1, 1, 28, 28]) + out = model(x) + + print(out.shape) \ No newline at end of file diff --git a/doc/paddle/api/paddle/vision/models/MobileNetV1_cn.rst b/doc/paddle/api/paddle/vision/models/MobileNetV1_cn.rst new file mode 100644 index 000000000..67a4cae63 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/MobileNetV1_cn.rst @@ -0,0 +1,29 @@ +.. _cn_api_paddle_vision_models_MobileNetV1: + +MobileNetV1 +------------------------------- + +.. py:class:: paddle.vision.models.MobileNetV1(scale=1.0, num_classes=1000, with_pool=True) + + MobileNetV1模型,来自论文`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_。 + +参数: + - **scale** (float,可选) - 模型通道数的缩放比例。默认值:1.0。 + - **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。 + - **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。 + +返回:mobilenetv1模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import MobileNetV1 + + model = MobileNetV1() + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/MobileNetV2_cn.rst b/doc/paddle/api/paddle/vision/models/MobileNetV2_cn.rst new file mode 100644 index 000000000..56c4066fa --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/MobileNetV2_cn.rst @@ -0,0 +1,29 @@ +.. _cn_api_paddle_vision_models_MobileNetV2: + +MobileNetV2 +------------------------------- + +.. py:class:: paddle.vision.models.MobileNetV2(scale=1.0, num_classes=1000, with_pool=True) + + MobileNetV2模型,来自论文`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_。 + +参数: + - **scale** (float,可选) - 模型通道数的缩放比例。默认值:1.0。 + - **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。 + - **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。 + +返回:mobilenetv2模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import MobileNetV2 + + model = MobileNetV2() + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/ResNet_cn.rst b/doc/paddle/api/paddle/vision/models/ResNet_cn.rst new file mode 100644 index 000000000..dde8845e5 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/ResNet_cn.rst @@ -0,0 +1,33 @@ +.. _cn_api_paddle_vision_models_ResNet: + +ResNet +------------------------------- + +.. py:class:: paddle.vision.models.ResNet(Block, depth=50, num_classes=1000, with_pool=True) + + ResNet模型,来自论文`"Deep Residual Learning for Image Recognition" `_。 + +参数: + - **Block** (BasicBlock|BottleneckBlock) - 模型的残差模块。 + - **depth** (int,可选) - resnet模型的深度。默认值:50 + - **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。 + - **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。 + +返回:ResNet模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import ResNet + from paddle.vision.models.resnet import BottleneckBlock, BasicBlock + + resnet50 = ResNet(BottleneckBlock, 50) + + resnet18 = ResNet(BasicBlock, 18) + + x = paddle.rand([1, 3, 224, 224]) + out = resnet18(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/VGG_cn.rst b/doc/paddle/api/paddle/vision/models/VGG_cn.rst new file mode 100644 index 000000000..21147c244 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/VGG_cn.rst @@ -0,0 +1,33 @@ +.. _cn_api_paddle_vision_models_VGG: + +VGG +------------------------------- + +.. py:class:: paddle.vision.models.VGG(features, num_classes=1000) + + VGG模型,来自论文`"Very Deep Convolutional Networks For Large-Scale Image Recognition" `_。 + +参数: + - **features** (Layer) - vgg模型的特征层。由函数make_layers产生。 + - **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。 + +返回:vgg模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import VGG + from paddle.vision.models.vgg import make_layers + + vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] + + features = make_layers(vgg11_cfg) + + vgg11 = VGG(features) + + x = paddle.rand([1, 3, 224, 224]) + out = vgg11(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/mobilenet_v1_cn.rst b/doc/paddle/api/paddle/vision/models/mobilenet_v1_cn.rst new file mode 100644 index 000000000..83a49508c --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/mobilenet_v1_cn.rst @@ -0,0 +1,35 @@ +.. _cn_api_paddle_vision_models_mobilenet_v1: + +mobilenet_v1 +------------------------------- + +.. py:function:: paddle.vision.models.mobilenet_v1(pretrained=False, scale=1.0, **kwargs) + + MobileNetV1模型,来自论文`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + - **scale** (float,可选) - 模型通道数的缩放比例。默认值:1.0。 + +返回:mobilenetv1模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import mobilenet_v1 + + # build model + model = mobilenet_v1() + + # build model and load imagenet pretrained weight + # model = mobilenet_v1(pretrained=True) + + # build mobilenet v1 with scale=0.5 + model_scale = mobilenet_v1(scale=0.5) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/mobilenet_v2_cn.rst b/doc/paddle/api/paddle/vision/models/mobilenet_v2_cn.rst new file mode 100644 index 000000000..93bb11560 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/mobilenet_v2_cn.rst @@ -0,0 +1,35 @@ +.. _cn_api_paddle_vision_models_mobilenet_v2: + +mobilenet_v2 +------------------------------- + +.. py:function:: paddle.vision.models.mobilenet_v2(pretrained=False, scale=1.0, **kwargs) + + MobileNetV2模型,来自论文`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + - **scale** (float,可选) - 模型通道数的缩放比例。默认值:1.0。 + +返回:mobilenetv2模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import mobilenet_v2 + + # build model + model = mobilenet_v2() + + # build model and load imagenet pretrained weight + # model = mobilenet_v2(pretrained=True) + + # build mobilenet v2 with scale=0.5 + model = mobilenet_v2(scale=0.5) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/resnet101_cn.rst b/doc/paddle/api/paddle/vision/models/resnet101_cn.rst new file mode 100644 index 000000000..0baf12db9 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/resnet101_cn.rst @@ -0,0 +1,31 @@ +.. _cn_api_paddle_vision_models_resnet101: + +resnet101 +------------------------------- + +.. py:function:: paddle.vision.models.resnet101(pretrained=False, **kwargs) + + 101层的resnet模型,来自论文`"Deep Residual Learning for Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + +返回:resnet101模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import resnet101 + + # build model + model = resnet101() + + # build model and load imagenet pretrained weight + # model = resnet101(pretrained=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/resnet152_cn.rst b/doc/paddle/api/paddle/vision/models/resnet152_cn.rst new file mode 100644 index 000000000..b0de35f85 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/resnet152_cn.rst @@ -0,0 +1,31 @@ +.. _cn_api_paddle_vision_models_resnet152: + +resnet152 +------------------------------- + +.. py:function:: paddle.vision.models.resnet152(pretrained=False, **kwargs) + + 152层的resnet模型,来自论文`"Deep Residual Learning for Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + +返回:resnet152模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import resnet152 + + # build model + model = resnet152() + + # build model and load imagenet pretrained weight + # model = resnet152(pretrained=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/resnet18_cn.rst b/doc/paddle/api/paddle/vision/models/resnet18_cn.rst new file mode 100644 index 000000000..05f3a158c --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/resnet18_cn.rst @@ -0,0 +1,31 @@ +.. _cn_api_paddle_vision_models_resnet18: + +resnet18 +------------------------------- + +.. py:function:: paddle.vision.models.resnet18(pretrained=False, **kwargs) + + 18层的resnet模型,来自论文`"Deep Residual Learning for Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + +返回:resnet18模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import resnet18 + + # build model + model = resnet18() + + # build model and load imagenet pretrained weight + # model = resnet18(pretrained=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/resnet34_cn.rst b/doc/paddle/api/paddle/vision/models/resnet34_cn.rst new file mode 100644 index 000000000..9f3aaaff9 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/resnet34_cn.rst @@ -0,0 +1,31 @@ +.. _cn_api_paddle_vision_models_resnet34: + +resnet34 +------------------------------- + +.. py:function:: paddle.vision.models.resnet34(pretrained=False, **kwargs) + + 34层的resnet模型,来自论文`"Deep Residual Learning for Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + +返回:resnet34模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import resnet34 + + # build model + model = resnet34() + + # build model and load imagenet pretrained weight + # model = resnet34(pretrained=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/resnet50_cn.rst b/doc/paddle/api/paddle/vision/models/resnet50_cn.rst new file mode 100644 index 000000000..1035193e0 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/resnet50_cn.rst @@ -0,0 +1,31 @@ +.. _cn_api_paddle_vision_models_resnet50: + +resnet50 +------------------------------- + +.. py:function:: paddle.vision.models.resnet50(pretrained=False, **kwargs) + + 50层的resnet模型,来自论文`"Deep Residual Learning for Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + +返回:resnet50模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import resnet50 + + # build model + model = resnet50() + + # build model and load imagenet pretrained weight + # model = resnet50(pretrained=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/vgg11_cn.rst b/doc/paddle/api/paddle/vision/models/vgg11_cn.rst new file mode 100644 index 000000000..35ee24863 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/vgg11_cn.rst @@ -0,0 +1,32 @@ +.. _cn_api_paddle_vision_models_vgg11: + +vgg11 +------------------------------- + +.. py:function:: paddle.vision.models.vgg11(pretrained=False, batch_norm=False, **kwargs) + + vgg11模型,来自论文`"Very Deep Convolutional Networks For Large-Scale Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + - **batch_norm** (bool, 可选) - 是否在每个卷积层后添加批归一化层。默认值:False。 + +返回:vgg11模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import vgg11 + + # build model + model = vgg11() + + # build vgg11 model with batch_norm + model = vgg11(batch_norm=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) \ No newline at end of file diff --git a/doc/paddle/api/paddle/vision/models/vgg13_cn.rst b/doc/paddle/api/paddle/vision/models/vgg13_cn.rst new file mode 100644 index 000000000..d96204947 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/vgg13_cn.rst @@ -0,0 +1,32 @@ +.. _cn_api_paddle_vision_models_vgg13: + +vgg13 +------------------------------- + +.. py:function:: paddle.vision.models.vgg13(pretrained=False, batch_norm=False, **kwargs) + + vgg13模型,来自论文`"Very Deep Convolutional Networks For Large-Scale Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + - **batch_norm** (bool, 可选) - 是否在每个卷积层后添加批归一化层。默认值:False。 + +返回:vgg13模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import vgg13 + + # build model + model = vgg13() + + # build vgg13 model with batch_norm + model = vgg13(batch_norm=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/vgg16_cn.rst b/doc/paddle/api/paddle/vision/models/vgg16_cn.rst new file mode 100644 index 000000000..4fb42f17b --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/vgg16_cn.rst @@ -0,0 +1,32 @@ +.. _cn_api_paddle_vision_models_vgg16: + +vgg16 +------------------------------- + +.. py:function:: paddle.vision.models.vgg16(pretrained=False, batch_norm=False, **kwargs) + + vgg16模型,来自论文`"Very Deep Convolutional Networks For Large-Scale Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + - **batch_norm** (bool, 可选) - 是否在每个卷积层后添加批归一化层。默认值:False。 + +返回:vgg16模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import vgg16 + + # build model + model = vgg16() + + # build vgg16 model with batch_norm + model = vgg16(batch_norm=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/doc/paddle/api/paddle/vision/models/vgg19_cn.rst b/doc/paddle/api/paddle/vision/models/vgg19_cn.rst new file mode 100644 index 000000000..3dadfa165 --- /dev/null +++ b/doc/paddle/api/paddle/vision/models/vgg19_cn.rst @@ -0,0 +1,32 @@ +.. _cn_api_paddle_vision_models_vgg19: + +vgg19 +------------------------------- + +.. py:function:: paddle.vision.models.vgg19(pretrained=False, batch_norm=False, **kwargs) + + vgg19模型,来自论文`"Very Deep Convolutional Networks For Large-Scale Image Recognition" `_。 + +参数: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + - **batch_norm** (bool, 可选) - 是否在每个卷积层后添加批归一化层。默认值:False。 + +返回:vgg19模型,Layer的实例。 + +**代码示例**: + +.. code-block:: python + + import paddle + from paddle.vision.models import vgg19 + + # build model + model = vgg19() + + # build vgg19 model with batch_norm + model = vgg19(batch_norm=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) -- GitLab