未验证 提交 a936fa8d 编写于 作者: B Bai Yifan 提交者: GitHub

fix some doc details, test=develop, test=document_preview (#1437)

上级 4b6ce1b4
......@@ -50,16 +50,16 @@ deformable_conv op对输入4-D Tensor计算2-D可变形卷积。给定输入Tens
- **mask** (Variable, 可选) – 可变形卷积层的输入掩码,当使用可变形卷积算子v2时,请将mask设置为None, 数据类型为float32或float64。
- **num_filters** (int) – 卷积核数,与输出Tensor通道数相同。
- **filter_size** (int|tuple) – 卷积核大小。如果filter_size为元组,则必须包含两个整数(filter_size_H, filter_size_W)。若数据类型为int,卷积核形状为(filter_size, filter_size)。
- **stride** (int|tuple) – 步长大小。如果stride为元组,则必须包含两个整数(stride_H, stride_W)。否则stride_H = stride_W = stride。缺省值为1。
- **padding** (int|tuple) – padding大小。如果padding为元组,则必须包含两个整数(padding_H, padding_W)。否则padding_H = padding_W = padding。缺省值为0。
- **dilation** (int|tuple) – dilation大小。如果dilation为元组,则必须包含两个整数(dilation_H, dilation_W)。否则dilation_H = dilation_W = dilation。缺省值为1。
- **stride** (int|tuple) – 步长大小。如果stride为元组,则必须包含两个整数(stride_H, stride_W)。否则stride_H = stride_W = stride。默认值为1。
- **padding** (int|tuple) – padding大小。如果padding为元组,则必须包含两个整数(padding_H, padding_W)。否则padding_H = padding_W = padding。默认值为0。
- **dilation** (int|tuple) – dilation大小。如果dilation为元组,则必须包含两个整数(dilation_H, dilation_W)。否则dilation_H = dilation_W = dilation。默认值为1。
- **groups** (int) – 卷积组数。依据Alex Krizhevsky的Deep CNN论文中的分组卷积,有:当group=2时,前一半卷积核只和前一半输入通道有关,而后一半卷积核只和后一半输入通道有关。缺省值为1。
- **deformable_groups** (int) – 可变形卷积组数。缺省值为1。
- **im2col_step** (int) – 每个im2col计算的最大图像数。总batch大小应可以被该值整除或小于该值。如果您面临内存问题,可以尝试在此处使用一个较小的值。缺省值为64。
- **param_attr** (ParamAttr,可选) – 可变形卷积的可学习权重的属性。如果将其设置为None或某种ParamAttr,可变形卷积将创建ParamAttr作为param_attr。如果没有设置此param_attr的Initializer,该参数将被Normal(0.0, std)初始化,且其中的std为 :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}` 。缺省值为None。
- **bias_attr** (ParamAttr|bool,可选) – 可变形卷积层的偏置的参数属性。如果设为False,则输出单元不会加偏置。如果设为None或者某种ParamAttr,conv2d会创建ParamAttr作为bias_attr。如果不设置bias_attr的Initializer,偏置会被初始化为0。缺省值为None。
- **modulated** (bool)- 确定使用v1和v2中的哪个版本,如果为True,则选择使用v2。缺省值为True。
- **name** (str,可选) – 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,缺省值为None。
- **deformable_groups** (int) – 可变形卷积组数。默认值为1。
- **im2col_step** (int) – 每个im2col计算的最大图像数。总batch大小应可以被该值整除或小于该值。如果您面临内存问题,可以尝试在此处使用一个较小的值。默认值为64。
- **param_attr** (ParamAttr,可选) – 可变形卷积的可学习权重的属性。如果将其设置为None或某种ParamAttr,可变形卷积将创建ParamAttr作为param_attr。如果没有设置此param_attr的Initializer,该参数将被Normal(0.0, std)初始化,且其中的std为 :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}` 。默认值为None。
- **bias_attr** (ParamAttr|bool,可选) – 可变形卷积层的偏置的参数属性。如果设为False,则输出单元不会加偏置。如果设为None或者某种ParamAttr,conv2d会创建ParamAttr作为bias_attr。如果不设置bias_attr的Initializer,偏置会被初始化为0。默认值为None。
- **modulated** (bool)- 确定使用v1和v2中的哪个版本,如果为True,则选择使用v2。默认值为True。
- **name** (str,可选) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回:可变形卷积输出的4-D Tensor,数据类型为float32或float64。
......
......@@ -31,8 +31,8 @@ flatten op将输入的多维Tensor展平成2-D Tensor矩阵
参数:
- **x** (Variable) - 一个维度数>=axis 的多维Tensor, 数据类型可以为float32,float64,int8,int32或int64。
- **axis** (int) - flatten展开的分割轴,[0, axis) 轴数据被flatten到输出矩阵的0轴,[axis, R)数据被flatten到输出矩阵的1轴,其中R是输入张量的总维度数。axis的值必须在[0,R]范围内。当 axis=0 时,若输入Tensor的维度为 :math:`[d_0, d_1,… d_n]` ,则输出张量的Tensor维度为 :math:`[1,d_0 * d_1 *… d_n]` ,缺省值为1。
- **name** (str,可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,缺省值为None。
- **axis** (int) - flatten展开的分割轴,[0, axis) 轴数据被flatten到输出矩阵的0轴,[axis, R)数据被flatten到输出矩阵的1轴,其中R是输入张量的总维度数。axis的值必须在[0,R]范围内。当 axis=0 时,若输入Tensor的维度为 :math:`[d_0, d_1,… d_n]` ,则输出张量的Tensor维度为 :math:`[1,d_0 * d_1 *… d_n]` ,默认值为1。
- **name** (str,可选) - 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回: 一个 2-D Tensor,它包含输入Tensor的数据,但维度发生变化。输入的[0, axis)维将沿axis展平到输出Tensor的0维度,剩余的输入维数展平到输出的1维度。数据类型与输入x相同。
......
......@@ -13,7 +13,7 @@ polygon_box_transform
参数:
- **input** (Variable) - 形状为 :math:`[batch\_size,geometry\_channels,height,width]` 的4-D Tensor,数据类型为float32或float64。
- **name** (str,可选) – 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,缺省值为None。
- **name** (str,可选) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回:polygon_box_transform输出的真实坐标,是一个 4-D Tensor。数据类型为float32或float64。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册