Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
a3947c42
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
5
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3947c42
编写于
7月 02, 2019
作者:
C
chengduo
提交者:
xsrobin
7月 02, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update doc (#985)
上级
361e38b3
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
9 addition
and
10 deletion
+9
-10
doc/fluid/advanced_usage/best_practice/training_best_practice.rst
...d/advanced_usage/best_practice/training_best_practice.rst
+9
-10
未找到文件。
doc/fluid/advanced_usage/best_practice/training_best_practice.rst
浏览文件 @
a3947c42
...
...
@@ -20,7 +20,7 @@ PaddlePaddle Fluid可以支持在现代CPU、GPU平台上进行训练。如果
1.1 cuDNN操作的选择
^^^^^^^^^^^^^^^^
`cuDNN <https://github.com/NVIDIA/nccl>`_
是NVIDIA提供的深度神经网络计算库,其中包含了很多神经网络中常用算子,Paddle中的部分Op底层调用的是cuDNN库,例如 :code:`conv2d` :
cuDNN
是NVIDIA提供的深度神经网络计算库,其中包含了很多神经网络中常用算子,Paddle中的部分Op底层调用的是cuDNN库,例如 :code:`conv2d` :
.. code-block:: python
...
...
@@ -72,7 +72,6 @@ Paddle提供一些粗粒度的API,这些API融合了多个细粒度API的计
Fluid提供了两种数据读取方式:**同步数据读取** 和 **异步数据读取**,详情请参考文档 `如何准备数据 <http://paddlepaddle.org/documentation/docs/zh/1.5/user_guides/howto/prepare_data/index_cn.html>`_ 。
2.1.1 同步数据读取
>>>>>>>>>>>>>>>
...
...
@@ -89,12 +88,12 @@ Fluid提供了两种数据读取方式:**同步数据读取** 和 **异步数
batch_time = time.time() - end
end = time.time()
用户通过调用自己编写的reader函数,reader每次输出一个batch的数据,并将数据传递给执行器。因此数据准备和执行是顺序进行的,用户可通过加入Python计时函数
:code`time.time()`
来统计数据准备部分和执行部分所占用的时间。
用户通过调用自己编写的reader函数,reader每次输出一个batch的数据,并将数据传递给执行器。因此数据准备和执行是顺序进行的,用户可通过加入Python计时函数
time.time()
来统计数据准备部分和执行部分所占用的时间。
2.1.2 异步数据读取
>>>>>>>>>>>>>>>
Paddle里面使用
:code`py_reader`
接口来实现异步数据读取,代码示例如下:
Paddle里面使用
py_reader
接口来实现异步数据读取,代码示例如下:
.. code-block:: python
...
...
@@ -144,7 +143,7 @@ Paddle里面使用 :code`py_reader` 接口来实现异步数据读取,代码
为了更好的分析模型, :code:`ParallelExecutor` 内部首先会将输入的 :code:`Program` 转为SSA Graph,然后根据 :code:`build_strategy` 中的配置,通过一系列的Pass对Graph进行优化,比如:memory optimize,operator fuse等优化。最后根据 :code:`execution_strategy` 中的配置执行训练任务。
此外, :code:`ParallelExecutor` 支持数据并行,即单进程多卡和多进程多卡,关于 :code:`ParallelExecutor` 的具体介绍请参考 `文档 <http://www.paddlepaddle.org
/documentation/docs/en/1.5/api_guides/low_level/parallel_executor_en.html>`_ .
此外, :code:`ParallelExecutor` 支持数据并行,即单进程多卡和多进程多卡,关于 :code:`ParallelExecutor` 的具体介绍请参考 `文档 <http://www.paddlepaddle.org
.cn/documentation/docs/zh/1.5/api_guides/low_level/parallel_executor.html>`_ 。
为了统一 :code:`ParallelExecutor` 接口和 :code:`Executor` 接口,Paddle提供了 :code:`fluid.compiler.CompiledProgram` 接口,在数据并行模式下,该接口底层调用的是 :code:`ParallelExecutor` 。
...
...
@@ -167,8 +166,8 @@ BuildStrategy配置选项
说明:
- 关于 :code:`reduce_strategy` ,在 :code:`ParallelExecutor` 对于数据并行支持两种参数更新模式: :code:`AllReduce` 和 :code:`Reduce` 。在 :code:`AllReduce` 模式下,各个节点上计算得到梯度之后,调用 :code:`AllReduce` 操作,梯度在各个节点上聚合,然后各个节点分别进行参数更新。在 :code:`Reduce` 模式下,参数的更新操作被均匀的分配到各个节点上,即各个节点计算得到梯度之后,将梯度在指定的节点上进行 :code:`Reduce` ,然后在该节点上,最后将更新之后的参数Broadcast到其他节点。即:如果模型中有100个参数需要更新,训练时使用的是4个节点,在 :code:`AllReduce` 模式下,各个节点需要分别对这100个参数进行更新;在 :code:`Reduce` 模式下,各个节点需要分别对这25个参数进行更新,最后将更新的参数Broadcast到其他节点上.
- 关于 :code:`enable_backward_optimizer_op_deps` ,在多卡训练时,打开该选项可能会提升训练速度
.
- 关于 :code:`fuse_all_optimizer_ops` ,目前只支持SGD、Adam和Momentum算法。**注意:目前不支持sparse参数梯度**。
- 关于 :code:`enable_backward_optimizer_op_deps` ,在多卡训练时,打开该选项可能会提升训练速度
。
- 关于 :code:`fuse_all_optimizer_ops` ,目前只支持SGD、Adam和Momentum算法。**注意:目前不支持sparse参数梯度**
。
- 关于 :code:`fuse_all_reduce_ops` ,多GPU训练时,可以对 :code:`AllReduce` 操作进行融合,以减少 :code:`AllReduce` 的调用次数。默认情况下会将同一layer中参数的梯度的 :code:`AllReduce` 操作合并成一个,比如对于 :code:`fluid.layers.fc` 中有Weight和Bias两个参数,打开该选项之后,原本需要两次 :code:`AllReduce` 操作,现在只用一次 :code:`AllReduce` 操作。此外,为支持更大粒度的参数梯度融合,Paddle提供了 :code:`FLAGS_fuse_parameter_memory_size` 选项,用户可以指定融合AllReduce操作之后,每个 :code:`AllReduce` 操作的梯度字节数,比如希望每次 :code:`AllReduce` 调用传输64MB的梯度,:code:`export FLAGS_fuse_parameter_memory_size=64` 。**注意:目前不支持sparse参数梯度**。
- 关于 :code:`mkldnn_enabled_op_types` ,支持mkldnn库的Op有:transpose, sum, softmax, requantize, quantize, pool2d, lrn, gaussian_random, fc, dequantize, conv2d_transpose, conv2d, conv3d, concat, batch_norm, relu, tanh, sqrt, abs.
...
...
@@ -181,12 +180,12 @@ ExecutionStrategy配置选项
:header: "选项", "类型", "默认值", "说明"
:widths: 3, 3, 5, 5
":code:`num_iteration_per_drop_scope`", "INT", "1", "经过多少次迭代之后清理一次local execution scope
.
"
":code:`num_iteration_per_drop_scope`", "INT", "1", "经过多少次迭代之后清理一次local execution scope"
":code:`num_threads`", "INT", "对于CPU:2*dev_count;对于GPU:4*dev_count. (这是一个经验值)", ":code:`ParallelExecutor` 中执行所有Op使用的线程池大小"
说明:
- 关于 :code:`num_iteration_per_drop_scope` ,框架在运行过程中会产生一些临时变量,这些变量被放在local execution scope中。通常每经过一个batch就要清理一下local execution scope中的变量,但是由于GPU是异步设备,在清理local execution scope之前需要对所有的GPU调用一次同步操作,因此耗费的时间较长。为此我们在 :code:`execution_strategy` 中添加了 :code:`num_iteration_per_drop_scope` 选项。用户可以指定经过多少次迭代之后清理一次local execution scope。
- 关于 :code:`num_threads` ,
"
:code:`ParallelExecutor` 根据Op之间的依赖关系确定Op的执行顺序,即:当Op的输入都已经变为ready状态之后,该Op会被放到一个队列中,等待被执行。 :code:`ParallelExecutor` 内部有一个任务调度线程和一个线程池,任务调度线程从队列中取出所有Ready的Op,并将其放到线程队列中。 :code:`num_threads` 表示线程池的大小。根据以往的经验,对于CPU任务,:code:`num_threads=2*dev_count` 时性能较好,对于GPU任务,:code:`num_threads=4*dev_count` 时性能较好。**注意:线程池不是越大越好**。
- 关于 :code:`num_threads` ,:code:`ParallelExecutor` 根据Op之间的依赖关系确定Op的执行顺序,即:当Op的输入都已经变为ready状态之后,该Op会被放到一个队列中,等待被执行。 :code:`ParallelExecutor` 内部有一个任务调度线程和一个线程池,任务调度线程从队列中取出所有Ready的Op,并将其放到线程队列中。 :code:`num_threads` 表示线程池的大小。根据以往的经验,对于CPU任务,:code:`num_threads=2*dev_count` 时性能较好,对于GPU任务,:code:`num_threads=4*dev_count` 时性能较好。**注意:线程池不是越大越好**。
执行策略配置推荐
>>>>>>>>>>>>>>>
...
...
@@ -202,7 +201,7 @@ CPU训练设置
4. 运行时FLAGS设置
=============
Fluid中有一些FLAGS可以有助于性能优化
Fluid中有一些FLAGS可以有助于性能优化
:
- FLAGS_fraction_of_gpu_memory_to_use表示每次分配GPU显存的最小单位,取值范围为[0, 1)。由于CUDA原生的显存分配cuMalloc和释放cuFree操作均是同步操作,非常耗时,因此将FLAGS_fraction_of_gpu_memory_to_use设置成一个较大的值,比如0.92(默认值),可以显著地加速训练的速度。
- FLAGS_cudnn_exhaustive_search表示cuDNN在选取conv实现算法时采取穷举搜索策略,因此往往能选取到一个更快的conv实现算法,这对于CNN网络通常都是有加速的。但穷举搜索往往也会增加cuDNN的显存需求,因此用户可根据模型的实际情况选择是否设置该变量。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录