未验证 提交 89c9b23f 编写于 作者: G guru4elephant 提交者: GitHub

Update async_executor.md

上级 62d320d2
......@@ -4,43 +4,44 @@ There are many deep learning applications that use sparse features as inputs, su
## User Interface Design
``` python
import paddle.fluid as fluid
startup_program = fluid.default_startup_program()
main_program = fluid.default_main_program()
filelist = "filelist.txt"
train_dataset = fluid.datasets.MyFeeder(filelist,
transforms.Transform([
transforms.tokenize()]))
train_loader = fluid.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
cur_block = fluid.default_main_program().current_block()
abs_input_var = cur_block.create_var(name='abs_input',
shape=[-1, 32, 32],
dtype='float32')
abs_output_var = cur_block.create_var(name='abs_output',
shape=[-1, 32, 32],
dtype='float32')
op_desc = cur_block.desc.append_op()
abs_op = Operator(block=cur_block, desc=op_desc, type='abs',
inputs={'X': [abs_input_var]}, outputs={'Out': [abs_output_var]})
for i, (slots, label) in enumerate(train_loader):
paddle.async_executor(feed_list=[slots, label],
startup_program=startup_program,
main_program=main_program,
fetch_list=[abs_output_var],
fetch_iter=10)
# do something on fetch list
def train_loop():
filelist = ["file%d.txt" % i for i in range(10)]
dataset = MultiSlotDataset()
dataset.set_batch_size(128)
# input text data
data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1)
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
avg_cost, acc, prediction = bow_net(data, label)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.002)
opt_ops, weight_and_grad = sgd_optimizer.minimize(avg_cost)
for w in weight_and_grad[0]:
reduce(lambda x * y, 1, w.shape)
varnames = [var.name for var in weight_and_grad[0]]
dataset.set_field_name([data.name, label.name])
startup_program = fluid.default_startup_program()
main_program = fluid.default_main_program()
infer_prog = get_infer_prog([data.name, label.name], [acc, predict])
place = fluid.CPUPlace()
executor = fluid.AsyncExecutor()
executor.run_startup_program(startup_program)
epochs = 10
for i in range(epochs):
acc_val = executor.run(
program=main_program, # make sure this can be changed during iteration
reader=dataset, # make sure this can be changed during iteration
filelist=filelist, # this can be changed during iteration
thread=thread_num, # make sure this can be changed during iteration
fetch=[acc]) # how to define fetch, and what kind of things to return here
print("accuracy %f" % acc_val)
executor.save_model(infer_prog, "epoch%d.model" % i)
# todo:
# inference to be added, should loadup a program and a global scope
```
## Difference between async_executor and other executors
async_executor is mainly designed for cpu training scenarios where data throughputs are high and the computation part of training is not intensive compared with GPU trained models such as resnet-50. Since data throughputs ability is very important in async_executor, we have to design very fast data IO modules to handle very large scale data reading. Another different key aspect is that memory is not a problem in cpu training scenarios given 128G or 256G RAW in modern server.
......@@ -52,13 +53,23 @@ to be discussed.
## Inside Structure of Async Executor
``` c++
void AsyncExecutor::RunFromFiles(const std::vector<std::string> & files,
void AsyncExecutor::RunFromFiles(
const ProgramDesc& main_program,
const std::vector<std::string> & files,
const int thread_num) {
// todo: remove fluid related interface
root_scope_->DropKids();
std::vector<std::thread> threads;
threads.resize(thread_num);
// prepare readers
/*
reader:
1) each thread has a reader, reader will read input data and
put it into input queue
2) each reader has a Next() iterface, that can fetch an instance
from the input queue
*/
// todo: should be factory method for creating datafeed
std::vector<std::shared_ptr<DataFeed> > readers;
readers.resize(thread_num);
for (auto& reader : readers) {
......@@ -89,7 +100,6 @@ void AsyncExecutor::RunFromFiles(const std::vector<std::string> & files,
}
// fetch variables in scope 0, and return
}
```
## How to print variable information during execution
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册