未验证 提交 848edafc 编写于 作者: D Dong Daxiang 提交者: GitHub

Update fleet_api_howto_cn.rst

test=document_preview
上级 f52a1882
.. _fleet_api_howto_cn:
使用FleetAPI进行分布式训练
==========================
......@@ -16,9 +14,10 @@ Fleet API快速上手示例
下面会针对Fleet
API最常见的两种使用场景,用一个模型做示例,目的是让用户有快速上手体验的模板。快速上手的示例源代码可以在\ `Fleet
Quick
Start <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/quick-start>`__\ 找到。
Start <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/quick-start>`__
找到。
假设我们定义MLP网络如下:
- 假设我们定义MLP网络如下:
.. code:: python
......@@ -32,7 +31,7 @@ Start <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/quick-start>`
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
定义一个在内存生成数据的Reader如下:
- 定义一个在内存生成数据的Reader如下:
.. code:: python
......@@ -42,32 +41,24 @@ Start <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/quick-start>`
return {"x": np.random.random(size=(128, 32)).astype('float32'),
"y": np.random.randint(2, size=(128, 1)).astype('int64')}
单机Trainer定义
>>>>>>>>>>>>>>>
- 单机Trainer定义
.. code:: python
import paddle.fluid as fluid from nets import mlp from utils import
gen\_data
import paddle.fluid as fluid
from nets import mlp
from utils import gen_data
input\_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input\_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
cost = mlp(input_x, input_y)
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
optimizer.minimize(cost)
cost = mlp(input\_x, input\_y) optimizer =
fluid.optimizer.SGD(learning\_rate=0.01) optimizer.minimize(cost)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
step = 1001
for i in range(step):
cost_val = exe.run(feed=gen_data(), fetch_list=[cost.name])
print("step%d cost=%f" % (i, cost_val[0]))
exe.run(fluid.default\_startup\_program()) step = 1001 for i in
range(step): cost\_val = exe.run(feed=gen\_data(),
fetch\_list=[cost.name]) print("step%d cost=%f" % (i, cost\_val[0]))
Parameter Server训练方法
>>>>>>>>>>>>>>>
- Parameter Server训练方法
参数服务器方法对于大规模数据,简单模型的并行训练非常适用,我们基于单机模型的定义给出其实用Parameter
Server进行训练的示例如下:
......@@ -107,8 +98,7 @@ Server进行训练的示例如下:
print("worker_index: %d, step%d cost = %f" %
(fleet.worker_index(), i, cost_val[0]))
Collective训练方法
>>>>>>>>>>>>>>>
- Collective训练方法
collective
training通常在GPU多机多卡训练中使用,一般在复杂模型的训练中比较常见,我们基于上面的单机模型定义给出使用Collective方法进行分布式训练的示例如下:
......@@ -147,23 +137,23 @@ training通常在GPU多机多卡训练中使用,一般在复杂模型的训练
更多使用示例
------------
`点击率预估 <>`__
`点击率预估 <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/ctr>`__
`语义匹配 <>`__
`语义匹配 <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/semantic_matching>`__
`向量学习 <>`__
`向量学习 <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/word2vec>`__
`基于Resnet50的图像分类 <>`__
`基于Resnet50的图像分类 <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/resnet50>`__
`基于Transformer的机器翻译 <>`__
`基于Transformer的机器翻译 <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/transformer>`__
`基于Bert的语义表示学习 <>`__
`基于Bert的语义表示学习 <https://github.com/PaddlePaddle/Fleet/tree/develop/examples/bert>`__
Fleet API相关的接口说明
-----------------------
Fleet API接口
>>>>>>>>>>>>>>>
>>>>>>>>>>>>
- init(role\_maker=None)
- fleet初始化,需要在使用fleet其他接口前先调用,用于定义多机的环境配置
......@@ -187,7 +177,7 @@ Fleet API接口
- 分布式优化算法装饰器,用户可带入单机optimizer,并配置分布式训练策略,返回一个分布式的optimizer
RoleMaker
>>>>>>>>>>>>>>>
>>>>>>>>>>>>
- MPISymetricRoleMaker
......@@ -195,19 +185,15 @@ RoleMaker
- 示例:
.. code:: python
\`\`\`python from
paddle.fluid.incubate.fleet.parameter\_server.distribute\_transpiler
import fleet from paddle.fluid.incubate.fleet.base import role\_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker
role = role_maker.MPISymetricRoleMaker()
fleet.init(role)
role = role\_maker.MPISymetricRoleMaker() fleet.init(role) \`\`\`
- 启动方法:
.. code:: shell
mpirun -np 2 python trainer.py
``python mpirun -np 2 python trainer.py``
- PaddleCloudRoleMaker
......@@ -215,35 +201,27 @@ RoleMaker
- Parameter Server训练示例:
.. code:: python
\`\`\`python from
paddle.fluid.incubate.fleet.parameter\_server.distribute\_transpiler
import fleet from paddle.fluid.incubate.fleet.base import role\_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
role = role\_maker.PaddleCloudRoleMaker() fleet.init(role) \`\`\`
- 启动方法:
.. code:: python
python -m paddle.distributed.launch_ps --worker_num 2 --server_num 2 trainer.py
``python python -m paddle.distributed.launch_ps --worker_num 2 --server_num 2 trainer.py``
- Collective训练示例:
.. code:: python
\`\`\`python from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.base import role\_maker
from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.base import role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
role = role\_maker.PaddleCloudRoleMaker(is\_collective=True)
fleet.init(role) \`\`\`
- 启动方法:
.. code:: python
python -m paddle.distributed.launch trainer.py
``python python -m paddle.distributed.launch trainer.py``
- UserDefinedRoleMaker
......@@ -251,21 +229,18 @@ RoleMaker
- 示例:
.. code:: python
\`\`\`python from
paddle.fluid.incubate.fleet.parameter\_server.distribute\_transpiler
import fleet from paddle.fluid.incubate.fleet.base import role\_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker
role = role_maker.UserDefinedRoleMaker(
current_id=int(os.getenv("CURRENT_ID")),
role=role_maker.Role.WORKER if bool(int(os.getenv("IS_WORKER")))
else role_maker.Role.SERVER,
worker_num=int(os.getenv("WORKER_NUM")),
server_endpoints=pserver_endpoints)
fleet.init(role)
role = role\_maker.UserDefinedRoleMaker(
current\_id=int(os.getenv("CURRENT\_ID")), role=role\_maker.Role.WORKER
if bool(int(os.getenv("IS\_WORKER"))) else role\_maker.Role.SERVER,
worker\_num=int(os.getenv("WORKER\_NUM")),
server\_endpoints=pserver\_endpoints) fleet.init(role) \`\`\`
Strategy
>>>>>>>>>>>>>>>
>>>>>>>>>>>>
- Parameter Server Training
- Sync\_mode
......@@ -274,7 +249,7 @@ Strategy
- ReduceGrad
Fleet Mode
>>>>>>>>>>>>>>>
>>>>>>>>>>>>
- Parameter Server Training
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册