提交 7ae1f609 编写于 作者: W wangjiawei04

adadelta momentum sgd

上级 9283a400
.. _cn_api_fluid_optimizer_AdadeltaOptimizer:
AdadeltaOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.AdadeltaOptimizer(learning_rate, epsilon=1.0e-6, rho=0.95, parameter_list=None, regularization=None, grad_clip=None, name=None)
**注意:此接口不支持稀疏参数更新。**
Adadelta优化器,具体细节可参考论文 `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_ 。
更新公式如下:
.. math::
E(g_t^2) &= \rho * E(g_{t-1}^2) + (1-\rho) * g^2\\
learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \epsilon ) / ( E(g_t^2) + \epsilon ) }\\
E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2
参数:
- **learning_rate** (float|Variable) - 全局学习率。
- **epsilon** (float) - 维持数值稳定性的浮点型值,默认值为1.0e-6。
- **rho** (float) - 算法中的衰减率,默认值为0.95。
- **parameter_list** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str,可选) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
image = fluid.layers.data(name='image', shape=[28], dtype='float32')
fc = fluid.layers.fc(image, size=10)
cost = fluid.layers.reduce_mean(fc)
optimizer = fluid.optimizer.AdadeltaOptimizer(
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
optimizer_ops, params_grads = optimizer.minimize(cost)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为训练网络添加反向和参数优化部分,进而使损失最小化。
参数:
- **loss** (Variable) – 优化器的损失变量。
- **startup_program** (Program,可选) – 参数所在的startup program。默认值为None,表示 :ref:`cn_api_fluid_default_startup_program` 。
- **parameter_list** (list,可选) – 待更新的Parameter或者Parameter.name组成的列表。默认值为None,表示所有参数均需要更新。
- **no_grad_set** (set,可选) – 不需要更新的Parameter或者Parameter.name组成的集合。默认值为None。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
image = fluid.layers.data(name='image', shape=[28], dtype='float32')
fc = fluid.layers.fc(image, size=10)
cost = fluid.layers.reduce_mean(fc)
optimizer = fluid.optimizer.AdadeltaOptimizer(
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
optimizer_ops, params_grads = optimizer.minimize(cost)
.. py:method:: clear_gradients()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
清除需要优化的参数的梯度。
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
value = np.arange(26).reshape(2, 13).astype("float32")
a = fluid.dygraph.to_variable(value)
linear = fluid.Linear(13, 5, dtype="float32")
optimizer = fluid.optimizer.AdadeltaOptimizer(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
parameter_list=linear.parameters())
out = linear(a)
out.backward()
optimizer.minimize(out)
optimizer.clear_gradients()
.. py:method:: set_lr()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
手动设置当前 ``optimizer`` 的学习率。当使用LearningRateDecay时,无法使用该API手动设置学习率,因为这将导致冲突。
参数:
value (float|Variable) - 需要设置的学习率的值。
返回:无
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
with fluid.dygraph.guard():
linear = fluid.dygraph.nn.Linear(10, 10)
adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())
# 通过Python float数值手动设置学习率
lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
for i in range(5):
adam.set_lr(lr_list[i])
print("current lr is {}".format(adam.current_step_lr()))
# 打印结果:
# current lr is 0.2
# current lr is 0.3
# current lr is 0.4
# current lr is 0.5
# current lr is 0.6
# 通过 框架的Variable 设置学习率
lr_var = fluid.layers.create_global_var(shape=[1], value=0.7, dtype='float32')
adam.set_lr(lr_var)
print("current lr is {}".format(adam.current_step_lr()))
# 打印结果:
# current lr is 0.7
.. py:method:: current_step_lr()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。
返回:当前步骤的学习率。
返回类型:float
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
# example1: LearningRateDecay is not used, return value is all the same
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
lr = adam.current_step_lr()
print(lr) # 0.001
# example2: PiecewiseDecay is used, return the step learning rate
with fluid.dygraph.guard():
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = fluid.dygraph.nn.Linear(10, 10)
inp = fluid.dygraph.to_variable(inp)
out = linear(inp)
loss = fluid.layers.reduce_mean(out)
bd = [2, 4, 6, 8]
value = [0.2, 0.4, 0.6, 0.8, 1.0]
adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
parameter_list=linear.parameters())
# first step: learning rate is 0.2
np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True
# learning rate for different steps
ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
for i in range(12):
adam.minimize(loss)
lr = adam.current_step_lr()
np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
.. _cn_api_fluid_optimizer_Adadelta: .. _cn_api_paddle_optimizer_Adadelta:
Adadelta AdadeltaOptimizer
------------------------------- -------------------------------
.. py:attribute:: paddle.fluid.optimizer.Adadelta .. py:class:: paddle.optimizer.Adadelta(learning_rate, epsilon=1.0e-6, rho=0.95, parameter_list=None, regularization=None, grad_clip=None, name=None)
**注意:此接口不支持稀疏参数更新。**
Adadelta优化器,具体细节可参考论文 `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_ 。
``AdadeltaOptimizer`` 的别名 更新公式如下:
.. math::
E(g_t^2) &= \rho * E(g_{t-1}^2) + (1-\rho) * g^2\\
learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \epsilon ) / ( E(g_t^2) + \epsilon ) }\\
E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2
参数:
- **learning_rate** (float|_LRScheduler) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个_LRScheduler类,默认值为0.001
- **epsilon** (float, 可选) - 保持数值稳定性的短浮点类型值,默认值为1e-06
- **rho** (float) - 算法中的衰减率,默认值为0.95。
- **parameters** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
- **weight_decay** (float|Tensor, 可选) - 权重衰减系数,是一个float类型或者shape为[1] ,数据类型为float32的Tensor类型。默认值为0.01
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
Adadelta优化器出自 `DECOUPLED WEIGHT DECAY REGULARIZATION 论文 <https://arxiv.org/pdf/1711.05101.pdf>`,用来解决Adam优化器中L2正则化失效的问题。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
parameters=linear.parameters())
out.backward()
adadelta.step()
adadelta.clear_grad()
.. py:method:: step()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
执行一次优化器并进行参数更新。
返回:None。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
parameters = linear.parameters())
out = linear(a)
out.backward()
adadelta.step()
adadelta.clear_grad()
.. py:method:: minimize(loss, startup_program=None, parameters=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameters中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Tensor) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameters中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameters** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。在静态图模式下,该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
parameters=linear.parameters())
out.backward()
adadelta.minimize(loss)
adadelta.clear_grad()
.. py:method:: clear_grad()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
清除需要优化的参数的梯度。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
optimizer = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
parameters=linear.parameters())
out = linear(a)
out.backward()
optimizer.step()
optimizer.clear_grad()
.. py:method:: set_lr(value)
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
手动设置当前 ``optimizer`` 的学习率。当使用_LRScheduler时,无法使用该API手动设置学习率,因为这将导致冲突。
参数:
value (float) - 需要设置的学习率的值。
返回:None
**代码示例**
.. code-block:: python
import paddle
paddle.disable_static()
linear = paddle.nn.Linear(10, 10)
adadelta = paddle.optimizer.AdamW(weight_decay=0.01,
learning_rate=0.1, parameters=linear.parameters())
# set learning rate manually by python float value
lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
for i in range(5):
adadelta.set_lr(lr_list[i])
lr = adadelta.get_lr()
print("current lr is {}".format(lr))
# Print:
# current lr is 0.2
# current lr is 0.3
# current lr is 0.4
# current lr is 0.5
# current lr is 0.6
.. py:method:: get_lr()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
获取当前步骤的学习率。当不使用_LRScheduler时,每次调用的返回值都相同,否则返回当前步骤的学习率。
返回:float,当前步骤的学习率。
**代码示例**
.. code-block:: python
import numpy as np
import paddle
# example1: _LRScheduler is not used, return value is all the same
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10, sparse=False)
adadelta = paddle.optimizer.Adadelta(learning_rate=0.001, parameters = emb.parameters(),weight_decay=0.01)
lr = adadelta.get_lr()
print(lr) # 0.001
# example2: PiecewiseLR is used, return the step learning rate
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.reduce_mean(out)
bd = [2, 4, 6, 8]
value = [0.2, 0.4, 0.6, 0.8, 1.0]
scheduler = paddle.optimizer.PiecewiseLR(bd, value, 0)
adadelta = paddle.optimizer.Adadelta(scheduler,
parameters=linear.parameters(),
weight_decay=0.01)
# first step: learning rate is 0.2
np.allclose(adadelta.get_lr(), 0.2, rtol=1e-06, atol=0.0) # True
# learning rate for different steps
ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
for i in range(12):
adadelta.step()
lr = adadelta.get_lr()
scheduler.step()
np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
.. _cn_api_fluid_optimizer_Momentum: .. _cn_api_paddle_optimizer_Momentum:
Momentum Momentum
------------------------------- -------------------------------
.. py:attribute:: paddle.fluid.optimizer.Momentum .. py:class:: paddle.optimizer.Momentum(learning_rate=0.001, epsilon=1.0e-6, rho=0.95, parameters=None, weight_decay=None, grad_clip=None, name=None)
该接口实现含有速度状态的Simple Momentum 优化器
该优化器含有牛顿动量标志,公式更新如下:
``MomentumOptimizer`` 的别名 更新公式如下:
.. math::
& velocity = mu * velocity + gradient\\
& if (use\_nesterov):\\
&\quad param = param - (gradient + mu * velocity) * learning\_rate\\
& else:\\&\quad param = param - learning\_rate * velocity
参数:
- **learning_rate** (float|_LRScheduler) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个_LRScheduler类,默认值为0.001
- **momentum** (float) - 动量因子。
- **parameters** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
- **weight_decay** (float|Tensor, 可选) - 权重衰减系数,是一个float类型或者shape为[1] ,数据类型为float32的Tensor类型。默认值为0.01
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
out.backward()
momentum.step()
momentum.clear_grad()
.. py:method:: step()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
执行一次优化器并进行参数更新。
返回:None。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
momentum = paddle.optimizer.Momentum(learning_rate=0.0003, parameters = linear.parameters())
out = linear(a)
out.backward()
momentum.step()
momentum.clear_grad()
.. py:method:: minimize(loss, startup_program=None, parameters=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameters中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Tensor) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameters中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameters** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。在静态图模式下,该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
momentum = paddle.optimizer.Momentum(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
parameters=linear.parameters())
out.backward()
momentum.minimize(loss)
momentum.clear_grad()
.. py:method:: clear_grad()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
清除需要优化的参数的梯度。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
optimizer = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
parameters=linear.parameters())
out = linear(a)
out.backward()
optimizer.step()
optimizer.clear_grad()
.. py:method:: set_lr(value)
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
.. _cn_api_fluid_optimizer_SGDOptimizer:
SGDOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.SGDOptimizer(learning_rate, parameter_list=None, regularization=None, grad_clip=None, name=None)
该接口实现随机梯度下降算法的优化器
.. math::
\\param\_out=param-learning\_rate*grad\\
参数:
- **learning_rate** (float|Variable) - 用于更新参数的学习率。可以是浮点值,也可以是具有一个浮点值作为数据元素的变量。
- **parameter_list** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
**代码示例**
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
**代码示例**
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
.. py:method:: clear_gradients()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
清除需要优化的参数的梯度。
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
value = np.arange(26).reshape(2, 13).astype("float32")
a = fluid.dygraph.to_variable(value)
linear = fluid.Linear(13, 5, dtype="float32")
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
parameter_list=linear.parameters())
out = linear(a)
out.backward()
optimizer.minimize(out)
optimizer.clear_gradients()
.. py:method:: set_lr()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
手动设置当前 ``optimizer`` 的学习率。当使用LearningRateDecay时,无法使用该API手动设置学习率,因为这将导致冲突。
参数:
value (float|Variable) - 需要设置的学习率的值。
返回:无
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
with fluid.dygraph.guard():
linear = fluid.dygraph.nn.Linear(10, 10)
adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())
# 通过Python float数值手动设置学习率
lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
for i in range(5):
adam.set_lr(lr_list[i])
print("current lr is {}".format(adam.current_step_lr()))
# 打印结果:
# current lr is 0.2
# current lr is 0.3
# current lr is 0.4
# current lr is 0.5
# current lr is 0.6
# 通过 框架的Variable 设置学习率
lr_var = fluid.layers.create_global_var(shape=[1], value=0.7, dtype='float32')
adam.set_lr(lr_var)
print("current lr is {}".format(adam.current_step_lr()))
# 打印结果:
# current lr is 0.7
.. py:method:: current_step_lr()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。
返回:当前步骤的学习率。
返回类型:float
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
# example1: LearningRateDecay is not used, return value is all the same
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
lr = adam.current_step_lr()
print(lr) # 0.001
# example2: PiecewiseDecay is used, return the step learning rate
with fluid.dygraph.guard():
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = fluid.dygraph.nn.Linear(10, 10)
inp = fluid.dygraph.to_variable(inp)
out = linear(inp)
loss = fluid.layers.reduce_mean(out)
bd = [2, 4, 6, 8]
value = [0.2, 0.4, 0.6, 0.8, 1.0]
adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
parameter_list=linear.parameters())
# first step: learning rate is 0.2
np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True
# learning rate for different steps
ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
for i in range(12):
adam.minimize(loss)
lr = adam.current_step_lr()
np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
.. _cn_api_fluid_optimizer_SGD: .. _cn_api_paddle_optimizer_SGD:
SGD SGD
------------------------------- -------------------------------
.. py:attribute:: paddle.fluid.optimizer.SGD .. py:class:: paddle.optimizer.SGD(learning_rate=0.001, parameters=None, weight_decay=None, grad_clip=None, name=None)
该接口实现随机梯度下降算法的优化器
.. math::
\\param\_out=param-learning\_rate*grad\\
``SGDOptimizer`` 的别名 为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameters中的Parameters,最小化网络损失值loss。
参数:
- **learning_rate** (float|_LRScheduler) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个_LRScheduler类,默认值为0.001
- **parameters** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。
- **weight_decay** (float|Tensor, 可选) - 权重衰减系数,是一个float类型或者shape为[1] ,数据类型为float32的Tensor类型。默认值为0.01
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters())
out.backward()
sgd.step()
sgd.clear_grad()
.. py:method:: step()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
执行一次优化器并进行参数更新。
返回:None。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
sgd = paddle.optimizer.SGD(learning_rate=0.0003, parameters = linear.parameters())
out = linear(a)
out.backward()
sgd.step()
sgd.clear_grad()
.. py:method:: minimize(loss, startup_program=None, parameters=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameters中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Tensor) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameters中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameters** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。在静态图模式下,该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
sgd = paddle.optimizer.SGD(learning_rate=0.0003, parameters=linear.parameters())
out.backward()
sgd.minimize(loss)
sgd.clear_grad()
.. py:method:: clear_grad()
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
清除需要优化的参数的梯度。
**代码示例**
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5)
optimizer = paddle.optimizer.SGD(learning_rate=0.0003,
parameters=linear.parameters())
out = linear(a)
out.backward()
optimizer.step()
optimizer.clear_grad()
.. py:method:: set_lr(value)
**注意:**
**1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效**
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册