Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
77b783d4
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
5
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
77b783d4
编写于
5月 09, 2020
作者:
S
suytingwan
提交者:
GitHub
5月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop add meshgrid cn rst (#2042)
上级
aac79137
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
54 addition
and
1 deletion
+54
-1
doc/fluid/api_cn/tensor_cn/meshgrid_cn.rst
doc/fluid/api_cn/tensor_cn/meshgrid_cn.rst
+54
-1
未找到文件。
doc/fluid/api_cn/tensor_cn/meshgrid_cn.rst
浏览文件 @
77b783d4
.. _cn_api_paddle_tensor_meshgrid:
meshgrid
meshgrid
-------------------------------
-------------------------------
**版本升级,文档正在开发中**
.. py:function:: paddle.tensor.meshgrid(input, name=None)
该OP的输入是tensor list, 包含 k 个一维Tensor,对每个Tensor做扩充操作,输出 k 个 k 维tensor。
参数:
- **input** (Variable)- 输入变量为 k 个一维Tensor,形状分别为(N1,), (N2,), ..., (Nk, )。支持数据类型为float32,float64,int32,int64。
- **name** (str, 可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
返回:
k 个 k 维Tensor,每个Tensor的形状均为(N1, N2, ..., Nk)。
返回类型: 变量(Variable)
**代码示例**
.. code-block:: python
#静态图示例
import paddle
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name='x', shape=[100], dtype='int32')
y = fluid.data(name='y', shape=[200], dtype='int32')
input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
input_2 = np.random.randint(0, 100, [200, ]).astype('int32')
exe = fluid.Executor(place=fluid.CPUPlace())
grid_x, grid_y = paddle.tensor.meshgrid([x, y])
res_1, res_2 = exe.run(fluid.default_main_program(),
feed={'x': input_1,
'y': input_2},
fetch_list=[grid_x, grid_y])
#the shape of res_1 is (100, 200)
#the shape of res_2 is (100, 200)
.. code-block:: python
#动态图示例
import paddle
import paddle.fluid as fluid
import numpy as np
input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
with fluid.dygraph.guard():
tensor_3 = fluid.dygraph.to_variable(input_3)
tensor_4 = fluid.dygraph.to_variable(input_4)
grid_x, grid_y = paddle.tensor.meshgrid([tensor_3, tensor_4])
#the shape of grid_x is (100, 200)
#the shape of grid_y is (100, 200)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录