From 702c0882e812cf72a534b5bc61eb6e7891afef03 Mon Sep 17 00:00:00 2001 From: xsrobin <50069408+xsrobin@users.noreply.github.com> Date: Mon, 29 Jul 2019 23:22:09 +0800 Subject: [PATCH] fix bug (#1057) * fix bug * Update nn_cn.rst --- doc/fluid/api_cn/layers_cn/nn_cn.rst | 14 +++++++------- doc/fluid/api_cn/metrics_cn.rst | 2 +- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/doc/fluid/api_cn/layers_cn/nn_cn.rst b/doc/fluid/api_cn/layers_cn/nn_cn.rst index a4c7d2977..7e4b495ef 100644 --- a/doc/fluid/api_cn/layers_cn/nn_cn.rst +++ b/doc/fluid/api_cn/layers_cn/nn_cn.rst @@ -1165,9 +1165,9 @@ conv3d - **stride** (int|tuple) - 步长(stride)大小。如果步长(stride)为元组,则必须包含三个整型数, (stride_D, stride_H, stride_W)。否则,stride_D = stride_H = stride_W = stride。默认:stride = 1 - **padding** (int|tuple) - 填充(padding)大小。如果填充(padding)为元组,则必须包含三个整型数,(padding_D, padding_H, padding_W)。否则, padding_D = padding_H = padding_W = padding。默认:padding = 0 - **dilation** (int|tuple) - 膨胀(dilation)大小。如果膨胀(dialation)为元组,则必须包含两个整型数, (dilation_D, dilation_H, dilation_W)。否则,dilation_D = dilation_H = dilation_W = dilation。默认:dilation = 1 - - **groups** (int) - 卷积二维层(Conv2D Layer)的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=2,滤波器的前一半仅和输入通道的前一半连接。滤波器的后一半仅和输入通道的后一半连接。默认:groups = 1 - - **param_attr** (ParamAttr|None) - conv2d的可学习参数/权重的参数属性。如果设为None或者ParamAttr的一个属性,conv2d创建ParamAttr为param_attr。如果param_attr的初始化函数未设置,参数则初始化为 :math:`Normal(0.0,std)`,并且std为 :math:`\left ( \frac{2.0}{filter\_elem\_num} \right )^{0.5}` 。默认为None - - **bias_attr** (ParamAttr|bool|None) - conv2d bias的参数属性。如果设为False,则没有bias加到输出。如果设为None或者ParamAttr的一个属性,conv2d创建ParamAttr为bias_attr。如果bias_attr的初始化函数未设置,bias初始化为0.默认为None + - **groups** (int) - 卷积三维层(Conv3D Layer)的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=2,滤波器的前一半仅和输入通道的前一半连接。滤波器的后一半仅和输入通道的后一半连接。默认:groups = 1 + - **param_attr** (ParamAttr|None) - conv3d的可学习参数/权重的参数属性。如果设为None或者ParamAttr的一个属性,conv3d创建ParamAttr为param_attr。如果param_attr的初始化函数未设置,参数则初始化为 :math:`Normal(0.0,std)`,并且std为 :math:`\left ( \frac{2.0}{filter\_elem\_num} \right )^{0.5}` 。默认为None + - **bias_attr** (ParamAttr|bool|None) - conv3d bias的参数属性。如果设为False,则没有bias加到输出。如果设为None或者ParamAttr的一个属性,conv3d创建ParamAttr为bias_attr。如果bias_attr的初始化函数未设置,bias初始化为0.默认为None - **use_cudnn** (bool) - 是否用cudnn核,仅当下载cudnn库才有效。默认:True - **act** (str) - 激活函数类型,如果设为None,则未添加激活函数。默认:None - **name** (str|None) - 该层名称(可选)。若设为None,则自动为该层命名。 @@ -1268,9 +1268,9 @@ conv3d_transpose - **padding** (int|tuple) - 填充大小。如果 ``padding`` 是一个元组,它必须包含两个整数(padding_H、padding_W)。否则,padding_H = padding_W = padding。默认:padding = 0。 - **stride** (int|tuple) - 步长大小。如果 ``stride`` 是一个元组,那么元组的形式为(stride_H、stride_W)。否则,stride_H = stride_W = stride。默认:stride = 1。 - **dilation** (int|元组) - 膨胀大小。如果 ``dilation`` 是一个元组,那么元组的形式为(dilation_H, dilation_W)。否则,dilation_H = dilation_W = dilation_W。默认:dilation= 1。 - - **groups** (int) - Conv2d转置层的groups个数。从Alex Krizhevsky的CNN Deep论文中的群卷积中受到启发,当group=2时,前半部分滤波器只连接到输入通道的前半部分,而后半部分滤波器只连接到输入通道的后半部分。默认值:group = 1。 - - **param_attr** (ParamAttr|None) - conv2d_transfer中可学习参数/权重的属性。如果param_attr值为None或ParamAttr的一个属性,conv2d_transfer使用ParamAttrs作为param_attr的值。如果没有设置的param_attr初始化器,那么使用Xavier初始化。默认值:None。 - - **bias_attr** (ParamAttr|bool|None) - conv2d_tran_bias中的bias属性。如果设置为False,则不会向输出单元添加偏置。如果param_attr值为None或ParamAttr的一个属性,将conv2d_transfer使用ParamAttrs作为,bias_attr。如果没有设置bias_attr的初始化器,bias将初始化为零。默认值:None。 + - **groups** (int) - Conv3d转置层的groups个数。从Alex Krizhevsky的CNN Deep论文中的群卷积中受到启发,当group=2时,前半部分滤波器只连接到输入通道的前半部分,而后半部分滤波器只连接到输入通道的后半部分。默认值:group = 1。 + - **param_attr** (ParamAttr|None) - conv3d_transfer中可学习参数/权重的属性。如果param_attr值为None或ParamAttr的一个属性,conv3d_transfer使用ParamAttrs作为param_attr的值。如果没有设置的param_attr初始化器,那么使用Xavier初始化。默认值:None。 + - **bias_attr** (ParamAttr|bool|None) - conv3d_tran_bias中的bias属性。如果设置为False,则不会向输出单元添加偏置。如果param_attr值为None或ParamAttr的一个属性,将conv3d_transfer使用ParamAttrs作为,bias_attr。如果没有设置bias_attr的初始化器,bias将初始化为零。默认值:None。 - **use_cudnn** (bool) - 是否使用cudnn内核,只有已安装cudnn库时才有效。默认值:True。 - **act** (str) - 激活函数类型,如果设置为None,则不使用激活函数。默认值:None。 - **name** (str|None) - 该layer的名称(可选)。如果设置为None, 将自动命名该layer。默认值:True。 @@ -8690,7 +8690,7 @@ slice slice算子。 -沿多个轴生成输入张量的切片。与numpy类似: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice使用 ``axes`` 、 ``starts`` 和 ``ends`` 属性来指定轴列表中每个轴的起点和终点维度,它使用此信息来对输入数据张量切片。如果向 ``starts`` 或 ``ends`` 传递负值,则表示该维度结束之前的元素数目。如果传递给 ``starts`` 或 ``end`` 的值大于n(此维度中的元素数目),则表示n。当切片一个未知数量的唯独时,建议传入INT_MAX. ``axes`` 的大小必须和 ``starts`` 和 ``ends`` 的相等。以下示例将解释切片如何工作: +沿多个轴生成输入张量的切片。与numpy类似: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice使用 ``axes`` 、 ``starts`` 和 ``ends`` 属性来指定轴列表中每个轴的起点和终点维度,它使用此信息来对输入数据张量切片。如果向 ``starts`` 或 ``ends`` 传递负值,则表示该维度结束之前的元素数目。如果传递给 ``starts`` 或 ``end`` 的值大于n(此维度中的元素数目),则表示n。当切片一个未知数量的维度时,建议传入INT_MAX. ``axes`` 的大小必须和 ``starts`` 和 ``ends`` 的相等。以下示例将解释切片如何工作: :: diff --git a/doc/fluid/api_cn/metrics_cn.rst b/doc/fluid/api_cn/metrics_cn.rst index ab02c5627..c76502a71 100644 --- a/doc/fluid/api_cn/metrics_cn.rst +++ b/doc/fluid/api_cn/metrics_cn.rst @@ -351,7 +351,7 @@ EditDistance batch_size = 128 # 初始化编辑距离管理器 - distances_evaluator = fluid.metrics.EditDistance("EditDistance") + distance_evaluator = fluid.metrics.EditDistance("EditDistance") # 生成128个序列对间的编辑距离,此处的最大距离是10 edit_distances_batch0 = np.random.randint(low = 0, high = 10, size = (batch_size, 1)) seq_num_batch0 = batch_size -- GitLab