未验证 提交 6e83bd5d 编写于 作者: C Chen Weihang 提交者: GitHub

Polish the Chinese API documentation of AdagradOptimizer (#1194)

* polish adagrad optimizer api zh doc

* polish details
上级 f935f246
......@@ -5,38 +5,42 @@ AdagradOptimizer
.. py:class:: paddle.fluid.optimizer.AdagradOptimizer(learning_rate, epsilon=1e-06, regularization=None, name=None, initial_accumulator_value=0.0)
**Adaptive Gradient Algorithm(Adagrad)**
Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针对不同参数样本数不平均的问题,自适应地为各个参数分配不同的学习率。
更新如下:
其参数更新的计算过程如下:
.. math::
moment\_out &= moment + grad * grad\\param\_out
&= param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
原始论文(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)没有epsilon属性。在我们的实现中也作了如下更新:
http://cs231n.github.io/neural-networks-3/#ada 用于维持数值稳定性,避免除数为0的错误发生。
相关论文:`Adaptive Subgradient Methods for Online Learning and Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_。
原始论文的算法中没有引入上述公式中的 ``epsilon`` 属性,此处引入该属性用于维持数值稳定性,避免除0错误发生。
引入epsilon参数依据:`Per-parameter adaptive learning rate methods <http://cs231n.github.io/neural-networks-3/#ada>`_。
参数:
- **learning_rate** (float|Variable)-学习率,用于更新参数。作为数据参数,可以是一个浮点类型值或者有一个浮点类型值的变量
- **epsilon** (float) - 维持数值稳定性的短浮点型值
- **regularization** - 规则化函数,例如fluid.regularizer.L2DecayRegularizer
- **name** - 名称前缀(可选)
- **initial_accumulator_value** (float) - moment累加器的初始值。
- **learning_rate** (float|Variable) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个值为浮点型的Variable
- **epsilon** (float, 可选) - 维持数值稳定性的浮点型值,默认值为1e-06
- **regularization** (WeightDecayRegularizer, 可选) - 正则化函数,用于减少泛化误差。例如可以是 :ref:`cn_api_fluid_regularizer_L2DecayRegularizer` ,默认值为None
- **name** (str, 可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
- **initial_accumulator_value** (float, 可选) - moment累加器的初始值,默认值为0.0
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
import paddle.fluid as fluid
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
inp = fluid.layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
out = fluid.layers.fc(inp, size=3)
out = fluid.layers.reduce_sum(out)
optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
optimizer.minimize(out)
exe = fluid.Executor(fluid.CPUPlace())
......@@ -45,141 +49,6 @@ http://cs231n.github.io/neural-networks-3/#ada 用于维持数值稳定性,避
feed={"inp": np_inp},
fetch_list=[out.name])
.. py:method:: apply_gradients(params_grads)
为给定的params_grads对附加优化算子,为minimize过程的第二步
参数:
- **params_grads** (list)- 用于优化的(param, grad)对组成的列表
返回: 附加在当前Program的算子组成的列表
返回类型: list
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
loss = network()
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
params_grads = optimizer.backward(loss)
# you may append operations for params_grads here
# ...
optimizer.apply_gradients(params_grads)
.. py:method:: apply_optimize(loss, startup_program, params_grads)
为给定的params_grads对附加优化算子,为minimize过程的第二步。
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **params_grads** (list)- 用于优化的(param, grad)对组成的列表
返回: 附加在当前Program的算子组成的列表
返回类型: list
.. py:method:: backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None)
自动做diff来向当前program附加反向算子,为minimize过程的第一步。
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **callbacks** (list|None) – 当为某参数附加反向算子时所要运行的callables组成的列表
返回: 附加在当前Program的算子组成的列表
返回类型: list
**代码示例**
详见apply_gradients的示例
.. py:method:: load(stat_dict)
在dygraph模式下,附带学习率衰减来加载优化器。
参数:
- **stat_dict** – load_persistable方法加载的dict
**代码示例**
.. code-block:: python
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.nn import FC
from paddle.fluid.dygraph.base import to_variable
class MLP(fluid.Layer):
def __init__(self, name_scope):
super(MLP, self).__init__(name_scope)
self._fc1 = FC(self.full_name(), 10)
self._fc2 = FC(self.full_name(), 10)
def forward(self, inputs):
y = self._fc1(inputs)
y = self._fc2(y)
return y
with fluid.dygraph.guard():
mlp = MLP('mlp')
optimizer2 = SGDOptimizer(
learning_rate=fluid.layers.natural_exp_decay(
learning_rate=0.1,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
for batch_id, data in enumerate(train_reader()):
dy_x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
128, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label._stop_gradient = True
cost = mlp(img)
avg_loss = fluid.layers.reduce_mean(cost)
avg_loss.backward()
optimizer.minimize(avg_loss)
mlp.clear_gradients()
fluid.dygraph.save_persistables(
mlp.state_dict(), [optimizer, optimizer2], "save_dir_2")
if batch_id == 2:
break
with fluid.dygraph.guard():
mlp_load = MLP('mlp')
optimizer_load2 = SGDOptimizer(
learning_rate=fluid.layers.natural_exp_decay(
learning_rate=0.1,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
parameters, optimizers = fluid.dygraph.load_persistables(
"save_dir_2")
mlp_load.load_dict(parameters)
optimizer_load2.load(optimizers)
self.assertTrue(optimizer2._learning_rate.__dict__ == optimizer_load2._learning_rate.__dict__)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册