Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
675b12a4
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
5
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
675b12a4
编写于
9月 18, 2020
作者:
D
danleifeng
提交者:
GitHub
9月 18, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add doc for paddle.fleet APIs in dygraph mode (#2649)
* add dygraph cn_doc;test=develop
上级
e3d81ece
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
347 addition
and
0 deletion
+347
-0
ci_scripts/api_white_list.txt
ci_scripts/api_white_list.txt
+1
-0
doc/paddle/api/paddle/distributed/fleet/Fleet_cn.rst
doc/paddle/api/paddle/distributed/fleet/Fleet_cn.rst
+346
-0
未找到文件。
ci_scripts/api_white_list.txt
浏览文件 @
675b12a4
...
@@ -7,3 +7,4 @@ paddle/optimizer/Dpsgd_cn.rst
...
@@ -7,3 +7,4 @@ paddle/optimizer/Dpsgd_cn.rst
paddle/reader/ComposeNotAligned_cn.rst
paddle/reader/ComposeNotAligned_cn.rst
paddle/fluid/layers/scatter_cn.rst
paddle/fluid/layers/scatter_cn.rst
paddle/tensor/manipulation/scatter_cn.rst
paddle/tensor/manipulation/scatter_cn.rst
paddle/distributed/fleet/Fleet_cn.rst
doc/paddle/api/paddle/distributed/fleet/Fleet_cn.rst
浏览文件 @
675b12a4
...
@@ -65,21 +65,367 @@ Fleet
...
@@ -65,21 +65,367 @@ Fleet
..
py
:
method
::
distributed_model
(
model
)
..
py
:
method
::
distributed_model
(
model
)
**
注意:
**
**
1.
该
API
只在
**
`
Dygraph
<../../
user_guides
/
howto
/
dygraph
/
DyGraph
.
html
>`
_
**
模式下生效
**
返回分布式数据并行模型。
参数:
model
(
Layer
)
-
用户定义的模型,此处模型是指继承动态图
Layer
的网络。
返回:分布式数据并行模型,该模型同样继承动态图
Layer
。
**
代码示例
**
..
code
-
block
::
python
#
这个示例需要由
fleetrun
启动
,
用法为
:
#
fleetrun
--
gpus
=
0
,
1
example
.
py
#
脚本
example
.
py
中的代码是下面这个示例
.
import
paddle
import
paddle
.
nn
as
nn
from
paddle
.
distributed
import
fleet
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
#
1.
enable
dynamic
mode
paddle
.
disable_static
()
#
2.
initialize
fleet
environment
fleet
.
init
(
is_collective
=
True
)
#
3.
create
layer
&
optimizer
layer
=
LinearNet
()
loss_fn
=
nn
.
MSELoss
()
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
layer
.
parameters
())
#
4.
get
data_parallel
model
using
fleet
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
#
5.
run
layer
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
print
(
"loss:"
,
loss
.
numpy
())
loss
=
dp_layer
.
scale_loss
(
loss
)
loss
.
backward
()
dp_layer
.
apply_collective_grads
()
adam
.
step
()
adam
.
clear_grad
()
..
py
:
method
::
state_dict
()
..
py
:
method
::
state_dict
()
**
注意:
**
**
1.
该
API
只在
**
`
Dygraph
<../../
user_guides
/
howto
/
dygraph
/
DyGraph
.
html
>`
_
**
模式下生效
**
以
``
dict
``
返回当前
``
optimizer
``
使用的所有
Tensor
。比如对于
Adam
优化器,将返回
beta1
,
beta2
,
momentum
等
Tensor
。
返回:
dict
,
当前
``
optimizer
``
使用的所有
Tensor
。
**
代码示例
**
..
code
-
block
::
python
#
这个示例需要由
fleetrun
启动
,
用法为
:
#
fleetrun
--
gpus
=
0
,
1
example
.
py
#
脚本
example
.
py
中的代码是下面这个示例
.
import
numpy
as
np
import
paddle
from
paddle
.
distributed
import
fleet
paddle
.
disable_static
()
fleet
.
init
(
is_collective
=
True
)
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
a
=
paddle
.
fluid
.
dygraph
.
to_variable
(
value
)
layer
=
paddle
.
nn
.
Linear
(
13
,
5
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
layer
.
parameters
())
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
state_dict
=
adam
.
state_dict
()
..
py
:
method
::
set_state_dict
(
state_dict
)
**
注意:
**
**
1.
该
API
只在
**
`
Dygraph
<../../
user_guides
/
howto
/
dygraph
/
DyGraph
.
html
>`
_
**
模式下生效
**
加载
``
optimizer
``
的
Tensor
字典给当前
``
optimizer
``
。
返回:
None
**
代码示例
**
..
code
-
block
::
python
#
这个示例需要由
fleetrun
启动
,
用法为
:
#
fleetrun
--
gpus
=
0
,
1
example
.
py
#
脚本
example
.
py
中的代码是下面这个示例
.
import
numpy
as
np
import
paddle
from
paddle
.
distributed
import
fleet
paddle
.
disable_static
()
fleet
.
init
(
is_collective
=
True
)
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
a
=
paddle
.
fluid
.
dygraph
.
to_variable
(
value
)
layer
=
paddle
.
nn
.
Linear
(
13
,
5
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
layer
.
parameters
())
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
state_dict
=
adam
.
state_dict
()
paddle
.
framework
.
save
(
state_dict
,
"paddle_dy"
)
para_state_dict
,
opti_state_dict
=
paddle
.
framework
.
load
(
"paddle_dy"
)
adam
.
set_state_dict
(
opti_state_dict
)
..
py
:
method
::
set_lr
(
value
)
..
py
:
method
::
set_lr
(
value
)
**
注意:
**
**
1.
该
API
只在
**
`
Dygraph
<../../
user_guides
/
howto
/
dygraph
/
DyGraph
.
html
>`
_
**
模式下生效
**
手动设置当前
``
optimizer
``
的学习率。
参数:
value
(
float
)
-
需要设置的学习率的值。
返回:
None
**
代码示例
**
..
code
-
block
::
python
#
这个示例需要由
fleetrun
启动
,
用法为
:
#
fleetrun
--
gpus
=
0
,
1
example
.
py
#
脚本
example
.
py
中的代码是下面这个示例
.
import
numpy
as
np
import
paddle
from
paddle
.
distributed
import
fleet
paddle
.
disable_static
()
fleet
.
init
(
is_collective
=
True
)
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
a
=
paddle
.
fluid
.
dygraph
.
to_variable
(
value
)
layer
=
paddle
.
nn
.
Linear
(
13
,
5
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
layer
.
parameters
())
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
lr_list
=
[
0.2
,
0.3
,
0.4
,
0.5
,
0.6
]
for
i
in
range
(
5
):
adam
.
set_lr
(
lr_list
[
i
])
lr
=
adam
.
get_lr
()
print
(
"current lr is {}"
.
format
(
lr
))
#
Print
:
#
current
lr
is
0.2
#
current
lr
is
0.3
#
current
lr
is
0.4
#
current
lr
is
0.5
#
current
lr
is
0.6
..
py
:
method
::
get_lr
()
..
py
:
method
::
get_lr
()
**
注意:
**
**
1.
该
API
只在
**
`
Dygraph
<../../
user_guides
/
howto
/
dygraph
/
DyGraph
.
html
>`
_
**
模式下生效
**
获取当前步骤的学习率。
返回:
float
,当前步骤的学习率。
**
代码示例
**
..
code
-
block
::
python
#
这个示例需要由
fleetrun
启动
,
用法为
:
#
fleetrun
--
gpus
=
0
,
1
example
.
py
#
脚本
example
.
py
中的代码是下面这个示例
.
import
numpy
as
np
import
paddle
from
paddle
.
distributed
import
fleet
paddle
.
disable_static
()
fleet
.
init
(
is_collective
=
True
)
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
a
=
paddle
.
fluid
.
dygraph
.
to_variable
(
value
)
layer
=
paddle
.
nn
.
Linear
(
13
,
5
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
,
parameters
=
layer
.
parameters
())
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
lr
=
adam
.
get_lr
()
print
(
lr
)
#
0.01
..
py
:
method
::
step
()
..
py
:
method
::
step
()
**
注意:
**
**
1.
该
API
只在
**
`
Dygraph
<../../
user_guides
/
howto
/
dygraph
/
DyGraph
.
html
>`
_
**
模式下生效
**
执行一次优化器并进行参数更新。
返回:
None
。
**
代码示例
**
..
code
-
block
::
python
#
这个示例需要由
fleetrun
启动
,
用法为
:
#
fleetrun
--
gpus
=
0
,
1
example
.
py
#
脚本
example
.
py
中的代码是下面这个示例
.
import
paddle
import
paddle
.
nn
as
nn
from
paddle
.
distributed
import
fleet
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
#
1.
enable
dynamic
mode
paddle
.
disable_static
()
#
2.
initialize
fleet
environment
fleet
.
init
(
is_collective
=
True
)
#
3.
create
layer
&
optimizer
layer
=
LinearNet
()
loss_fn
=
nn
.
MSELoss
()
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
layer
.
parameters
())
#
4.
get
data_parallel
model
using
fleet
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
#
5.
run
layer
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
print
(
"loss:"
,
loss
.
numpy
())
loss
=
dp_layer
.
scale_loss
(
loss
)
loss
.
backward
()
dp_layer
.
apply_collective_grads
()
adam
.
step
()
adam
.
clear_grad
()
..
py
:
method
::
clear_grad
()
..
py
:
method
::
clear_grad
()
**
注意:
**
**
1.
该
API
只在
**
`
Dygraph
<../../
user_guides
/
howto
/
dygraph
/
DyGraph
.
html
>`
_
**
模式下生效
**
清除需要优化的参数的梯度。
返回:
None
。
**
代码示例
**
..
code
-
block
::
python
#
这个示例需要由
fleetrun
启动
,
用法为
:
#
fleetrun
--
gpus
=
0
,
1
example
.
py
#
脚本
example
.
py
中的代码是下面这个示例
.
import
paddle
import
paddle
.
nn
as
nn
from
paddle
.
distributed
import
fleet
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
#
1.
enable
dynamic
mode
paddle
.
disable_static
()
#
2.
initialize
fleet
environment
fleet
.
init
(
is_collective
=
True
)
#
3.
create
layer
&
optimizer
layer
=
LinearNet
()
loss_fn
=
nn
.
MSELoss
()
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
layer
.
parameters
())
#
4.
get
data_parallel
model
using
fleet
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
#
5.
run
layer
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
print
(
"loss:"
,
loss
.
numpy
())
loss
=
dp_layer
.
scale_loss
(
loss
)
loss
.
backward
()
dp_layer
.
apply_collective_grads
()
adam
.
step
()
adam
.
clear_grad
()
..
py
:
method
::
minimize
(
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
)
..
py
:
method
::
minimize
(
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录