diff --git a/doc/paddle/index_cn.rst b/doc/paddle/index_cn.rst index 8132b78798d527b39afdeaaf0ee0a6f61f61aede..de09e58d9c1124033d7375d939d8f126acb1c18e 100644 --- a/doc/paddle/index_cn.rst +++ b/doc/paddle/index_cn.rst @@ -13,6 +13,7 @@ install/index_cn.rst guides/index_cn.rst + tutorial/index_cn.rst api/index_cn.rst faq/index_cn.rst release_note_cn.md diff --git a/doc/paddle/tutorial/cv_case/index_cn.rst b/doc/paddle/tutorial/cv_case/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..2bf44a2bde89c7f01bc25b9df76e6cf6ff4b545e --- /dev/null +++ b/doc/paddle/tutorial/cv_case/index_cn.rst @@ -0,0 +1,15 @@ +################ +计算机视觉 +################ + + +在这里PaddlePaddle为大家提供了一篇cv的教程供大家学习: + + - `图像分类 <./mnist_lenet_classification/mnist_lenet_classification.html>`_ :介绍使用 Paddle 在MNIST数据集上完成图像分类。 + +.. toctree:: + :hidden: + :titlesonly: + + mnist_lenet_classification/mnist_lenet_classification.rst + diff --git a/doc/paddle/tutorial/cv_case/mnist_lenet_classification/mnist_lenet_classification.rst b/doc/paddle/tutorial/cv_case/mnist_lenet_classification/mnist_lenet_classification.rst new file mode 100644 index 0000000000000000000000000000000000000000..0a6e138547294f2f8e9048b392d9667830155a5d --- /dev/null +++ b/doc/paddle/tutorial/cv_case/mnist_lenet_classification/mnist_lenet_classification.rst @@ -0,0 +1,503 @@ +MNIST数据集使用LeNet进行图像分类 +================================ + +本示例教程演示如何在MNIST数据集上用LeNet进行图像分类。 +手写数字的MNIST数据集,包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1。该数据集的官方地址为:http://yann.lecun.com/exdb/mnist/ + +环境 +---- + +本教程基于paddle-develop编写,如果您的环境不是本版本,请先安装paddle-develop版本。 + +.. code:: ipython3 + + import paddle + print(paddle.__version__) + paddle.disable_static() + + +.. parsed-literal:: + + 0.0.0 + + +加载数据集 +---------- + +我们使用飞桨自带的paddle.dataset完成mnist数据集的加载。 + +.. code:: ipython3 + + print('download training data and load training data') + train_dataset = paddle.vision.datasets.MNIST(mode='train') + test_dataset = paddle.vision.datasets.MNIST(mode='test') + print('load finished') + + +.. parsed-literal:: + + /Library/Python/3.7/site-packages/ipykernel/ipkernel.py:287: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. + and should_run_async(code) + + +.. parsed-literal:: + + download training data and load training data + load finished + + +取训练集中的一条数据看一下。 + +.. code:: ipython3 + + import numpy as np + import matplotlib.pyplot as plt + train_data0, train_label_0 = train_dataset[0][0],train_dataset[0][1] + train_data0 = train_data0.reshape([28,28]) + plt.figure(figsize=(2,2)) + plt.imshow(train_data0, cmap=plt.cm.binary) + print('train_data0 label is: ' + str(train_label_0)) + + +.. parsed-literal:: + + train_data0 label is: [5] + + +.. image:: https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/paddle/user_guides/cv_case/image_classification/image/cifar.png?raw=true + +2.组网 +------ + +用paddle.nn下的API,如\ ``Conv2d``\ 、\ ``Pool2D``\ 、\ ``Linead``\ 完成LeNet的构建。 + +.. code:: ipython3 + + import paddle + import paddle.nn.functional as F + class LeNet(paddle.nn.Layer): + def __init__(self): + super(LeNet, self).__init__() + self.conv1 = paddle.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2) + self.max_pool1 = paddle.nn.MaxPool2d(kernel_size=2, stride=2) + self.conv2 = paddle.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1) + self.max_pool2 = paddle.nn.MaxPool2d(kernel_size=2, stride=2) + self.linear1 = paddle.nn.Linear(in_features=16*5*5, out_features=120) + self.linear2 = paddle.nn.Linear(in_features=120, out_features=84) + self.linear3 = paddle.nn.Linear(in_features=84, out_features=10) + + def forward(self, x): + x = self.conv1(x) + x = F.relu(x) + x = self.max_pool1(x) + x = F.relu(x) + x = self.conv2(x) + x = self.max_pool2(x) + x = paddle.reshape(x, shape=[-1, 16*5*5]) + x = self.linear1(x) + x = F.relu(x) + x = self.linear2(x) + x = F.relu(x) + x = self.linear3(x) + x = F.softmax(x) + return x + + +.. parsed-literal:: + + /Library/Python/3.7/site-packages/ipykernel/ipkernel.py:287: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. + and should_run_async(code) + + +3.训练方式一 +------------ + +组网后,开始对模型进行训练,先构建\ ``train_loader``\ ,加载训练数据,然后定义\ ``train``\ 函数,设置好损失函数后,按batch加载数据,完成模型的训练。 + +.. code:: ipython3 + + import paddle + train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=64) + # 加载训练集 batch_size 设为 64 + def train(model): + model.train() + epochs = 2 + optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) + # 用Adam作为优化函数 + for epoch in range(epochs): + for batch_id, data in enumerate(train_loader()): + x_data = data[0] + y_data = data[1] + predicts = model(x_data) + loss = paddle.nn.functional.cross_entropy(predicts, y_data) + # 计算损失 + acc = paddle.metric.accuracy(predicts, y_data, k=2) + avg_loss = paddle.mean(loss) + avg_acc = paddle.mean(acc) + avg_loss.backward() + if batch_id % 100 == 0: + print("epoch: {}, batch_id: {}, loss is: {}, acc is: {}".format(epoch, batch_id, avg_loss.numpy(), avg_acc.numpy())) + optim.minimize(avg_loss) + model.clear_gradients() + model = LeNet() + train(model) + + +.. parsed-literal:: + + epoch: 0, batch_id: 0, loss is: [2.3062382], acc is: [0.109375] + epoch: 0, batch_id: 100, loss is: [1.6826601], acc is: [0.84375] + epoch: 0, batch_id: 200, loss is: [1.685574], acc is: [0.796875] + epoch: 0, batch_id: 300, loss is: [1.5752499], acc is: [0.96875] + epoch: 0, batch_id: 400, loss is: [1.5006541], acc is: [1.] + epoch: 0, batch_id: 500, loss is: [1.5343401], acc is: [0.984375] + epoch: 0, batch_id: 600, loss is: [1.4875913], acc is: [0.984375] + epoch: 0, batch_id: 700, loss is: [1.5139006], acc is: [0.984375] + epoch: 0, batch_id: 800, loss is: [1.5227785], acc is: [0.984375] + epoch: 0, batch_id: 900, loss is: [1.4938308], acc is: [1.] + epoch: 1, batch_id: 0, loss is: [1.4826943], acc is: [0.984375] + epoch: 1, batch_id: 100, loss is: [1.4852213], acc is: [0.984375] + epoch: 1, batch_id: 200, loss is: [1.5008337], acc is: [1.] + epoch: 1, batch_id: 300, loss is: [1.505826], acc is: [1.] + epoch: 1, batch_id: 400, loss is: [1.4768786], acc is: [1.] + epoch: 1, batch_id: 500, loss is: [1.4950027], acc is: [0.984375] + epoch: 1, batch_id: 600, loss is: [1.4762383], acc is: [0.984375] + epoch: 1, batch_id: 700, loss is: [1.5276604], acc is: [0.96875] + epoch: 1, batch_id: 800, loss is: [1.4897399], acc is: [1.] + epoch: 1, batch_id: 900, loss is: [1.4927337], acc is: [1.] + + +对模型进行验证 +~~~~~~~~~~~~~~ + +训练完成后,需要验证模型的效果,此时,加载测试数据集,然后用训练好的模对测试集进行预测,计算损失与精度。 + +.. code:: ipython3 + + import paddle + test_loader = paddle.io.DataLoader(test_dataset, places=paddle.CPUPlace(), batch_size=64) + # 加载测试数据集 + def test(model): + model.eval() + batch_size = 64 + for batch_id, data in enumerate(train_loader()): + x_data = data[0] + y_data = data[1] + predicts = model(x_data) + # 获取预测结果 + loss = paddle.nn.functional.cross_entropy(predicts, y_data) + acc = paddle.metric.accuracy(predicts, y_data, k=2) + avg_loss = paddle.mean(loss) + avg_acc = paddle.mean(acc) + avg_loss.backward() + if batch_id % 100 == 0: + print("batch_id: {}, loss is: {}, acc is: {}".format(batch_id, avg_loss.numpy(), avg_acc.numpy())) + test(model) + + +.. parsed-literal:: + + batch_id: 0, loss is: [1.4630548], acc is: [1.] + batch_id: 100, loss is: [1.4789999], acc is: [0.984375] + batch_id: 200, loss is: [1.4621592], acc is: [1.] + batch_id: 300, loss is: [1.486401], acc is: [1.] + batch_id: 400, loss is: [1.4767764], acc is: [1.] + batch_id: 500, loss is: [1.4987783], acc is: [0.984375] + batch_id: 600, loss is: [1.4767168], acc is: [1.] + batch_id: 700, loss is: [1.4876428], acc is: [0.984375] + batch_id: 800, loss is: [1.4924926], acc is: [0.984375] + batch_id: 900, loss is: [1.4799261], acc is: [1.] + + +训练方式一结束 +~~~~~~~~~~~~~~ + +以上就是训练方式一,通过这种方式,可以清楚的看到训练和测试中的每一步过程。但是,这种方式句法比较复杂。因此,我们提供了训练方式二,能够更加快速、高效的完成模型的训练与测试。 + +3.训练方式二 +------------ + +通过paddle提供的\ ``Model`` +构建实例,使用封装好的训练与测试接口,快速完成模型训练与测试。 + +.. code:: ipython3 + + import paddle + from paddle.static import InputSpec + from paddle.metric import Accuracy + inputs = InputSpec([None, 784], 'float32', 'x') + labels = InputSpec([None, 10], 'float32', 'x') + model = paddle.Model(LeNet(), inputs, labels) + optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) + + model.prepare( + optim, + paddle.nn.loss.CrossEntropyLoss(), + Accuracy(topk=(1, 2)) + ) + +使用model.fit来训练模型 +~~~~~~~~~~~~~~~~~~~~~~~ + +.. code:: ipython3 + + model.fit(train_dataset, + epochs=2, + batch_size=64, + save_dir='mnist_checkpoint') + + +.. parsed-literal:: + + Epoch 1/2 + step 10/938 - loss: 2.2252 - acc_top1: 0.2547 - acc_top2: 0.4234 - 16ms/step + + +.. parsed-literal:: + + /Library/Python/3.7/site-packages/paddle/fluid/layers/utils.py:76: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working + return (isinstance(seq, collections.Sequence) and + + +.. parsed-literal:: + + step 20/938 - loss: 1.9721 - acc_top1: 0.3664 - acc_top2: 0.5164 - 15ms/step + step 30/938 - loss: 1.8697 - acc_top1: 0.4464 - acc_top2: 0.5651 - 15ms/step + step 40/938 - loss: 1.8475 - acc_top1: 0.4859 - acc_top2: 0.5898 - 15ms/step + step 50/938 - loss: 1.8683 - acc_top1: 0.5256 - acc_top2: 0.6156 - 14ms/step + step 60/938 - loss: 1.8091 - acc_top1: 0.5437 - acc_top2: 0.6237 - 14ms/step + step 70/938 - loss: 1.7934 - acc_top1: 0.5607 - acc_top2: 0.6335 - 14ms/step + step 80/938 - loss: 1.7796 - acc_top1: 0.5760 - acc_top2: 0.6418 - 14ms/step + step 90/938 - loss: 1.8004 - acc_top1: 0.5868 - acc_top2: 0.6476 - 14ms/step + step 100/938 - loss: 1.7650 - acc_top1: 0.5972 - acc_top2: 0.6536 - 14ms/step + step 110/938 - loss: 1.7839 - acc_top1: 0.6033 - acc_top2: 0.6570 - 14ms/step + step 120/938 - loss: 1.8094 - acc_top1: 0.6087 - acc_top2: 0.6592 - 14ms/step + step 130/938 - loss: 1.8125 - acc_top1: 0.6153 - acc_top2: 0.6638 - 14ms/step + step 140/938 - loss: 1.7318 - acc_top1: 0.6217 - acc_top2: 0.6673 - 14ms/step + step 150/938 - loss: 1.8209 - acc_top1: 0.6267 - acc_top2: 0.6702 - 14ms/step + step 160/938 - loss: 1.7661 - acc_top1: 0.6308 - acc_top2: 0.6725 - 14ms/step + step 170/938 - loss: 1.7099 - acc_top1: 0.6341 - acc_top2: 0.6741 - 14ms/step + step 180/938 - loss: 1.8059 - acc_top1: 0.6363 - acc_top2: 0.6753 - 14ms/step + step 190/938 - loss: 1.7681 - acc_top1: 0.6400 - acc_top2: 0.6779 - 14ms/step + step 200/938 - loss: 1.8631 - acc_top1: 0.6430 - acc_top2: 0.6826 - 14ms/step + step 210/938 - loss: 1.6808 - acc_top1: 0.6479 - acc_top2: 0.6879 - 14ms/step + step 220/938 - loss: 1.5447 - acc_top1: 0.6558 - acc_top2: 0.6965 - 14ms/step + step 230/938 - loss: 1.6170 - acc_top1: 0.6641 - acc_top2: 0.7051 - 14ms/step + step 240/938 - loss: 1.6190 - acc_top1: 0.6719 - acc_top2: 0.7134 - 14ms/step + step 250/938 - loss: 1.5698 - acc_top1: 0.6794 - acc_top2: 0.7209 - 14ms/step + step 260/938 - loss: 1.6071 - acc_top1: 0.6869 - acc_top2: 0.7284 - 14ms/step + step 270/938 - loss: 1.5507 - acc_top1: 0.6939 - acc_top2: 0.7364 - 14ms/step + step 280/938 - loss: 1.5286 - acc_top1: 0.7023 - acc_top2: 0.7451 - 14ms/step + step 290/938 - loss: 1.5740 - acc_top1: 0.7098 - acc_top2: 0.7532 - 14ms/step + step 300/938 - loss: 1.5179 - acc_top1: 0.7172 - acc_top2: 0.7608 - 14ms/step + step 310/938 - loss: 1.5325 - acc_top1: 0.7240 - acc_top2: 0.7677 - 14ms/step + step 320/938 - loss: 1.4961 - acc_top1: 0.7305 - acc_top2: 0.7744 - 14ms/step + step 330/938 - loss: 1.5420 - acc_top1: 0.7369 - acc_top2: 0.7804 - 14ms/step + step 340/938 - loss: 1.5652 - acc_top1: 0.7427 - acc_top2: 0.7861 - 14ms/step + step 350/938 - loss: 1.5122 - acc_top1: 0.7484 - acc_top2: 0.7918 - 14ms/step + step 360/938 - loss: 1.5308 - acc_top1: 0.7544 - acc_top2: 0.7972 - 14ms/step + step 370/938 - loss: 1.5354 - acc_top1: 0.7596 - acc_top2: 0.8023 - 14ms/step + step 380/938 - loss: 1.5433 - acc_top1: 0.7645 - acc_top2: 0.8073 - 14ms/step + step 390/938 - loss: 1.5341 - acc_top1: 0.7693 - acc_top2: 0.8119 - 14ms/step + step 400/938 - loss: 1.4826 - acc_top1: 0.7740 - acc_top2: 0.8163 - 14ms/step + step 410/938 - loss: 1.4995 - acc_top1: 0.7785 - acc_top2: 0.8205 - 14ms/step + step 420/938 - loss: 1.5057 - acc_top1: 0.7827 - acc_top2: 0.8244 - 14ms/step + step 430/938 - loss: 1.4927 - acc_top1: 0.7866 - acc_top2: 0.8282 - 14ms/step + step 440/938 - loss: 1.5281 - acc_top1: 0.7902 - acc_top2: 0.8316 - 14ms/step + step 450/938 - loss: 1.5060 - acc_top1: 0.7936 - acc_top2: 0.8347 - 14ms/step + step 460/938 - loss: 1.5135 - acc_top1: 0.7968 - acc_top2: 0.8380 - 14ms/step + step 470/938 - loss: 1.5206 - acc_top1: 0.8004 - acc_top2: 0.8411 - 14ms/step + step 480/938 - loss: 1.4963 - acc_top1: 0.8039 - acc_top2: 0.8441 - 14ms/step + step 490/938 - loss: 1.4984 - acc_top1: 0.8071 - acc_top2: 0.8470 - 14ms/step + step 500/938 - loss: 1.4947 - acc_top1: 0.8101 - acc_top2: 0.8498 - 14ms/step + step 510/938 - loss: 1.4639 - acc_top1: 0.8130 - acc_top2: 0.8524 - 14ms/step + step 520/938 - loss: 1.4781 - acc_top1: 0.8158 - acc_top2: 0.8549 - 14ms/step + step 530/938 - loss: 1.4806 - acc_top1: 0.8187 - acc_top2: 0.8575 - 14ms/step + step 540/938 - loss: 1.4830 - acc_top1: 0.8214 - acc_top2: 0.8600 - 14ms/step + step 550/938 - loss: 1.4852 - acc_top1: 0.8239 - acc_top2: 0.8623 - 14ms/step + step 560/938 - loss: 1.5302 - acc_top1: 0.8263 - acc_top2: 0.8645 - 14ms/step + step 570/938 - loss: 1.5520 - acc_top1: 0.8286 - acc_top2: 0.8667 - 14ms/step + step 580/938 - loss: 1.4897 - acc_top1: 0.8305 - acc_top2: 0.8687 - 14ms/step + step 590/938 - loss: 1.4857 - acc_top1: 0.8328 - acc_top2: 0.8707 - 14ms/step + step 600/938 - loss: 1.5081 - acc_top1: 0.8351 - acc_top2: 0.8727 - 14ms/step + step 610/938 - loss: 1.5013 - acc_top1: 0.8373 - acc_top2: 0.8746 - 14ms/step + step 620/938 - loss: 1.4949 - acc_top1: 0.8395 - acc_top2: 0.8764 - 14ms/step + step 630/938 - loss: 1.4971 - acc_top1: 0.8412 - acc_top2: 0.8781 - 14ms/step + step 640/938 - loss: 1.4869 - acc_top1: 0.8434 - acc_top2: 0.8800 - 14ms/step + step 650/938 - loss: 1.5202 - acc_top1: 0.8450 - acc_top2: 0.8815 - 14ms/step + step 660/938 - loss: 1.5002 - acc_top1: 0.8468 - acc_top2: 0.8832 - 14ms/step + step 670/938 - loss: 1.5178 - acc_top1: 0.8487 - acc_top2: 0.8848 - 14ms/step + step 680/938 - loss: 1.4939 - acc_top1: 0.8504 - acc_top2: 0.8864 - 14ms/step + step 690/938 - loss: 1.4650 - acc_top1: 0.8520 - acc_top2: 0.8878 - 14ms/step + step 700/938 - loss: 1.4934 - acc_top1: 0.8537 - acc_top2: 0.8892 - 14ms/step + step 710/938 - loss: 1.5473 - acc_top1: 0.8552 - acc_top2: 0.8905 - 14ms/step + step 720/938 - loss: 1.4956 - acc_top1: 0.8568 - acc_top2: 0.8918 - 14ms/step + step 730/938 - loss: 1.4644 - acc_top1: 0.8583 - acc_top2: 0.8932 - 14ms/step + step 740/938 - loss: 1.4868 - acc_top1: 0.8598 - acc_top2: 0.8946 - 14ms/step + step 750/938 - loss: 1.5142 - acc_top1: 0.8613 - acc_top2: 0.8959 - 14ms/step + step 760/938 - loss: 1.4656 - acc_top1: 0.8628 - acc_top2: 0.8971 - 14ms/step + step 770/938 - loss: 1.5005 - acc_top1: 0.8641 - acc_top2: 0.8983 - 14ms/step + step 780/938 - loss: 1.5557 - acc_top1: 0.8653 - acc_top2: 0.8994 - 14ms/step + step 790/938 - loss: 1.4687 - acc_top1: 0.8666 - acc_top2: 0.9006 - 14ms/step + step 800/938 - loss: 1.4686 - acc_top1: 0.8680 - acc_top2: 0.9017 - 14ms/step + step 810/938 - loss: 1.5202 - acc_top1: 0.8693 - acc_top2: 0.9028 - 14ms/step + step 820/938 - loss: 1.4773 - acc_top1: 0.8705 - acc_top2: 0.9038 - 14ms/step + step 830/938 - loss: 1.4838 - acc_top1: 0.8717 - acc_top2: 0.9049 - 14ms/step + step 840/938 - loss: 1.4726 - acc_top1: 0.8728 - acc_top2: 0.9059 - 14ms/step + step 850/938 - loss: 1.4734 - acc_top1: 0.8741 - acc_top2: 0.9069 - 14ms/step + step 860/938 - loss: 1.4627 - acc_top1: 0.8752 - acc_top2: 0.9078 - 14ms/step + step 870/938 - loss: 1.4872 - acc_top1: 0.8763 - acc_top2: 0.9088 - 14ms/step + step 880/938 - loss: 1.4916 - acc_top1: 0.8773 - acc_top2: 0.9096 - 14ms/step + step 890/938 - loss: 1.4818 - acc_top1: 0.8784 - acc_top2: 0.9105 - 14ms/step + step 900/938 - loss: 1.4967 - acc_top1: 0.8794 - acc_top2: 0.9114 - 14ms/step + step 910/938 - loss: 1.4614 - acc_top1: 0.8804 - acc_top2: 0.9123 - 14ms/step + step 920/938 - loss: 1.4819 - acc_top1: 0.8815 - acc_top2: 0.9132 - 14ms/step + step 930/938 - loss: 1.5114 - acc_top1: 0.8824 - acc_top2: 0.9140 - 14ms/step + step 938/938 - loss: 1.4621 - acc_top1: 0.8832 - acc_top2: 0.9146 - 14ms/step + save checkpoint at /Users/chenlong/online_repo/book/paddle2.0_docs/image_classification/mnist_checkpoint/0 + Epoch 2/2 + step 10/938 - loss: 1.5033 - acc_top1: 0.9734 - acc_top2: 0.9906 - 15ms/step + step 20/938 - loss: 1.4812 - acc_top1: 0.9734 - acc_top2: 0.9906 - 14ms/step + step 30/938 - loss: 1.4623 - acc_top1: 0.9714 - acc_top2: 0.9911 - 14ms/step + step 40/938 - loss: 1.4775 - acc_top1: 0.9711 - acc_top2: 0.9918 - 14ms/step + step 50/938 - loss: 1.4857 - acc_top1: 0.9712 - acc_top2: 0.9922 - 14ms/step + step 60/938 - loss: 1.4895 - acc_top1: 0.9695 - acc_top2: 0.9904 - 14ms/step + step 70/938 - loss: 1.4746 - acc_top1: 0.9708 - acc_top2: 0.9908 - 14ms/step + step 80/938 - loss: 1.4945 - acc_top1: 0.9719 - acc_top2: 0.9912 - 14ms/step + step 90/938 - loss: 1.4644 - acc_top1: 0.9722 - acc_top2: 0.9911 - 14ms/step + step 100/938 - loss: 1.4727 - acc_top1: 0.9722 - acc_top2: 0.9912 - 14ms/step + step 110/938 - loss: 1.4634 - acc_top1: 0.9720 - acc_top2: 0.9915 - 14ms/step + step 120/938 - loss: 1.4856 - acc_top1: 0.9730 - acc_top2: 0.9915 - 14ms/step + step 130/938 - loss: 1.4778 - acc_top1: 0.9736 - acc_top2: 0.9916 - 14ms/step + step 140/938 - loss: 1.4949 - acc_top1: 0.9730 - acc_top2: 0.9914 - 14ms/step + step 150/938 - loss: 1.4836 - acc_top1: 0.9726 - acc_top2: 0.9914 - 14ms/step + step 160/938 - loss: 1.5430 - acc_top1: 0.9725 - acc_top2: 0.9917 - 14ms/step + step 170/938 - loss: 1.4882 - acc_top1: 0.9722 - acc_top2: 0.9916 - 14ms/step + step 180/938 - loss: 1.4777 - acc_top1: 0.9721 - acc_top2: 0.9919 - 14ms/step + step 190/938 - loss: 1.4816 - acc_top1: 0.9723 - acc_top2: 0.9920 - 14ms/step + step 200/938 - loss: 1.4916 - acc_top1: 0.9730 - acc_top2: 0.9923 - 14ms/step + step 210/938 - loss: 1.5290 - acc_top1: 0.9734 - acc_top2: 0.9923 - 14ms/step + step 220/938 - loss: 1.5006 - acc_top1: 0.9736 - acc_top2: 0.9923 - 14ms/step + step 230/938 - loss: 1.5103 - acc_top1: 0.9737 - acc_top2: 0.9923 - 14ms/step + step 240/938 - loss: 1.4905 - acc_top1: 0.9733 - acc_top2: 0.9920 - 14ms/step + step 250/938 - loss: 1.5066 - acc_top1: 0.9734 - acc_top2: 0.9920 - 14ms/step + step 260/938 - loss: 1.4846 - acc_top1: 0.9736 - acc_top2: 0.9920 - 14ms/step + step 270/938 - loss: 1.4717 - acc_top1: 0.9738 - acc_top2: 0.9921 - 14ms/step + step 280/938 - loss: 1.4648 - acc_top1: 0.9742 - acc_top2: 0.9921 - 14ms/step + step 290/938 - loss: 1.4657 - acc_top1: 0.9745 - acc_top2: 0.9921 - 14ms/step + step 300/938 - loss: 1.4630 - acc_top1: 0.9744 - acc_top2: 0.9920 - 14ms/step + step 310/938 - loss: 1.5053 - acc_top1: 0.9742 - acc_top2: 0.9918 - 14ms/step + step 320/938 - loss: 1.4843 - acc_top1: 0.9745 - acc_top2: 0.9919 - 14ms/step + step 330/938 - loss: 1.4915 - acc_top1: 0.9745 - acc_top2: 0.9919 - 14ms/step + step 340/938 - loss: 1.5146 - acc_top1: 0.9745 - acc_top2: 0.9918 - 14ms/step + step 350/938 - loss: 1.4768 - acc_top1: 0.9742 - acc_top2: 0.9916 - 14ms/step + step 360/938 - loss: 1.4827 - acc_top1: 0.9743 - acc_top2: 0.9918 - 14ms/step + step 370/938 - loss: 1.5097 - acc_top1: 0.9740 - acc_top2: 0.9917 - 14ms/step + step 380/938 - loss: 1.5225 - acc_top1: 0.9739 - acc_top2: 0.9916 - 14ms/step + step 390/938 - loss: 1.4701 - acc_top1: 0.9740 - acc_top2: 0.9917 - 14ms/step + step 400/938 - loss: 1.4986 - acc_top1: 0.9741 - acc_top2: 0.9920 - 14ms/step + step 410/938 - loss: 1.5210 - acc_top1: 0.9740 - acc_top2: 0.9918 - 14ms/step + step 420/938 - loss: 1.4799 - acc_top1: 0.9740 - acc_top2: 0.9917 - 14ms/step + step 430/938 - loss: 1.4845 - acc_top1: 0.9744 - acc_top2: 0.9919 - 14ms/step + step 440/938 - loss: 1.4773 - acc_top1: 0.9741 - acc_top2: 0.9918 - 14ms/step + step 450/938 - loss: 1.4719 - acc_top1: 0.9743 - acc_top2: 0.9918 - 14ms/step + step 460/938 - loss: 1.4773 - acc_top1: 0.9742 - acc_top2: 0.9918 - 14ms/step + step 470/938 - loss: 1.4944 - acc_top1: 0.9741 - acc_top2: 0.9918 - 14ms/step + step 480/938 - loss: 1.4793 - acc_top1: 0.9743 - acc_top2: 0.9919 - 14ms/step + step 490/938 - loss: 1.4625 - acc_top1: 0.9746 - acc_top2: 0.9920 - 14ms/step + step 500/938 - loss: 1.4829 - acc_top1: 0.9745 - acc_top2: 0.9921 - 14ms/step + step 510/938 - loss: 1.4659 - acc_top1: 0.9747 - acc_top2: 0.9921 - 14ms/step + step 520/938 - loss: 1.4862 - acc_top1: 0.9743 - acc_top2: 0.9921 - 14ms/step + step 530/938 - loss: 1.5039 - acc_top1: 0.9742 - acc_top2: 0.9921 - 14ms/step + step 540/938 - loss: 1.5070 - acc_top1: 0.9740 - acc_top2: 0.9921 - 14ms/step + step 550/938 - loss: 1.5033 - acc_top1: 0.9740 - acc_top2: 0.9922 - 14ms/step + step 560/938 - loss: 1.4846 - acc_top1: 0.9741 - acc_top2: 0.9921 - 14ms/step + step 570/938 - loss: 1.4613 - acc_top1: 0.9741 - acc_top2: 0.9921 - 14ms/step + step 580/938 - loss: 1.4616 - acc_top1: 0.9743 - acc_top2: 0.9921 - 14ms/step + step 590/938 - loss: 1.4801 - acc_top1: 0.9745 - acc_top2: 0.9921 - 14ms/step + step 600/938 - loss: 1.4772 - acc_top1: 0.9746 - acc_top2: 0.9921 - 14ms/step + step 610/938 - loss: 1.4612 - acc_top1: 0.9746 - acc_top2: 0.9921 - 14ms/step + step 620/938 - loss: 1.4951 - acc_top1: 0.9746 - acc_top2: 0.9922 - 14ms/step + step 630/938 - loss: 1.4755 - acc_top1: 0.9747 - acc_top2: 0.9923 - 14ms/step + step 640/938 - loss: 1.5296 - acc_top1: 0.9749 - acc_top2: 0.9924 - 14ms/step + step 650/938 - loss: 1.5054 - acc_top1: 0.9748 - acc_top2: 0.9924 - 14ms/step + step 660/938 - loss: 1.4775 - acc_top1: 0.9749 - acc_top2: 0.9925 - 14ms/step + step 670/938 - loss: 1.4829 - acc_top1: 0.9749 - acc_top2: 0.9925 - 14ms/step + step 680/938 - loss: 1.4612 - acc_top1: 0.9750 - acc_top2: 0.9926 - 14ms/step + step 690/938 - loss: 1.4869 - acc_top1: 0.9751 - acc_top2: 0.9926 - 14ms/step + step 700/938 - loss: 1.4612 - acc_top1: 0.9752 - acc_top2: 0.9927 - 14ms/step + step 710/938 - loss: 1.5235 - acc_top1: 0.9752 - acc_top2: 0.9927 - 14ms/step + step 720/938 - loss: 1.5317 - acc_top1: 0.9752 - acc_top2: 0.9926 - 14ms/step + step 730/938 - loss: 1.4898 - acc_top1: 0.9751 - acc_top2: 0.9926 - 14ms/step + step 740/938 - loss: 1.4612 - acc_top1: 0.9753 - acc_top2: 0.9926 - 14ms/step + step 750/938 - loss: 1.4935 - acc_top1: 0.9752 - acc_top2: 0.9926 - 14ms/step + step 760/938 - loss: 1.5140 - acc_top1: 0.9749 - acc_top2: 0.9926 - 14ms/step + step 770/938 - loss: 1.4883 - acc_top1: 0.9748 - acc_top2: 0.9925 - 14ms/step + step 780/938 - loss: 1.4759 - acc_top1: 0.9748 - acc_top2: 0.9926 - 14ms/step + step 790/938 - loss: 1.4773 - acc_top1: 0.9750 - acc_top2: 0.9926 - 14ms/step + step 800/938 - loss: 1.4766 - acc_top1: 0.9750 - acc_top2: 0.9926 - 14ms/step + step 810/938 - loss: 1.5058 - acc_top1: 0.9750 - acc_top2: 0.9927 - 14ms/step + step 820/938 - loss: 1.4867 - acc_top1: 0.9749 - acc_top2: 0.9927 - 14ms/step + step 830/938 - loss: 1.4766 - acc_top1: 0.9748 - acc_top2: 0.9927 - 14ms/step + step 840/938 - loss: 1.4680 - acc_top1: 0.9747 - acc_top2: 0.9927 - 14ms/step + step 850/938 - loss: 1.4628 - acc_top1: 0.9746 - acc_top2: 0.9927 - 14ms/step + step 860/938 - loss: 1.5035 - acc_top1: 0.9747 - acc_top2: 0.9928 - 14ms/step + step 870/938 - loss: 1.4857 - acc_top1: 0.9748 - acc_top2: 0.9928 - 14ms/step + step 880/938 - loss: 1.4767 - acc_top1: 0.9748 - acc_top2: 0.9927 - 14ms/step + step 890/938 - loss: 1.4612 - acc_top1: 0.9750 - acc_top2: 0.9928 - 14ms/step + step 900/938 - loss: 1.4620 - acc_top1: 0.9751 - acc_top2: 0.9928 - 14ms/step + step 910/938 - loss: 1.4621 - acc_top1: 0.9751 - acc_top2: 0.9928 - 14ms/step + step 920/938 - loss: 1.4768 - acc_top1: 0.9751 - acc_top2: 0.9927 - 14ms/step + step 930/938 - loss: 1.4806 - acc_top1: 0.9752 - acc_top2: 0.9928 - 14ms/step + step 938/938 - loss: 1.4910 - acc_top1: 0.9752 - acc_top2: 0.9928 - 14ms/step + save checkpoint at /Users/chenlong/online_repo/book/paddle2.0_docs/image_classification/mnist_checkpoint/1 + save checkpoint at /Users/chenlong/online_repo/book/paddle2.0_docs/image_classification/mnist_checkpoint/final + + +使用model.evaluate来预测模型 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code:: ipython3 + + model.evaluate(test_dataset, batch_size=64) + + +.. parsed-literal:: + + Eval begin... + step 10/157 - loss: 1.5014 - acc_top1: 0.9766 - acc_top2: 0.9953 - 6ms/step + step 20/157 - loss: 1.5239 - acc_top1: 0.9742 - acc_top2: 0.9922 - 6ms/step + step 30/157 - loss: 1.4926 - acc_top1: 0.9740 - acc_top2: 0.9932 - 6ms/step + step 40/157 - loss: 1.4612 - acc_top1: 0.9734 - acc_top2: 0.9938 - 6ms/step + step 50/157 - loss: 1.4612 - acc_top1: 0.9719 - acc_top2: 0.9938 - 6ms/step + step 60/157 - loss: 1.5114 - acc_top1: 0.9721 - acc_top2: 0.9938 - 6ms/step + step 70/157 - loss: 1.4793 - acc_top1: 0.9696 - acc_top2: 0.9935 - 6ms/step + step 80/157 - loss: 1.4736 - acc_top1: 0.9695 - acc_top2: 0.9932 - 6ms/step + step 90/157 - loss: 1.4892 - acc_top1: 0.9720 - acc_top2: 0.9939 - 6ms/step + step 100/157 - loss: 1.4623 - acc_top1: 0.9738 - acc_top2: 0.9941 - 6ms/step + step 110/157 - loss: 1.4612 - acc_top1: 0.9737 - acc_top2: 0.9939 - 6ms/step + step 120/157 - loss: 1.4612 - acc_top1: 0.9746 - acc_top2: 0.9939 - 6ms/step + step 130/157 - loss: 1.4703 - acc_top1: 0.9757 - acc_top2: 0.9942 - 6ms/step + step 140/157 - loss: 1.4612 - acc_top1: 0.9771 - acc_top2: 0.9946 - 6ms/step + step 150/157 - loss: 1.4748 - acc_top1: 0.9782 - acc_top2: 0.9950 - 6ms/step + step 157/157 - loss: 1.4612 - acc_top1: 0.9770 - acc_top2: 0.9949 - 6ms/step + Eval samples: 10000 + + + + +.. parsed-literal:: + + {'loss': [1.4611504], 'acc_top1': 0.977, 'acc_top2': 0.9949} + + + +训练方式二结束 +~~~~~~~~~~~~~~ + +以上就是训练方式二,可以快速、高效的完成网络模型训练与预测。 + +总结 +---- + +以上就是用LeNet对手写数字数据及MNIST进行分类。本示例提供了两种训练模型的方式,一种可以快速完成模型的组建与预测,非常适合新手用户上手。另一种则需要多个步骤来完成模型的训练,适合进阶用户使用。 diff --git a/doc/paddle/tutorial/cv_case/mnist_lenet_classification/mnist_lenet_classification_files/mnist_lenet_classification_6_1.png b/doc/paddle/tutorial/cv_case/mnist_lenet_classification/mnist_lenet_classification_files/mnist_lenet_classification_6_1.png new file mode 100644 index 0000000000000000000000000000000000000000..91327f435ad51a582cc577c32fcaef3126e383b6 Binary files /dev/null and b/doc/paddle/tutorial/cv_case/mnist_lenet_classification/mnist_lenet_classification_files/mnist_lenet_classification_6_1.png differ diff --git a/doc/paddle/tutorial/index_cn.rst b/doc/paddle/tutorial/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..8bff97402ebb3864fd804d6c1858ae367469e927 --- /dev/null +++ b/doc/paddle/tutorial/index_cn.rst @@ -0,0 +1,19 @@ +######## +应用实践 +######## + +如果您已经初步了解了PaddlePaddle,期望可以针对实际问题建模、搭建自己网络,本模块提供了一些 Paddle 的具体典型案例供您参考: + +本章文档将指导您如何使用PaddlePaddle完成基础的深度学习任务 + +本章文档涉及大量了深度学习基础知识,也介绍了如何使用PaddlePaddle实现这些内容,请参阅以下说明了解如何使用: + + +**内容简介** + + - `计算机视觉 <./cv_case/index_cn.html>`_ :介绍使用 Paddle 解决计算机视觉领域的案例 + +.. toctree:: + :hidden: + + cv_case/index_cn.rst