diff --git a/doc/fluid/advanced_usage/deploy/anakin_arm_benchmark.md b/doc/fluid/advanced_usage/deploy/anakin_arm_benchmark.md index 748e8ea41121e59dfb3758fd6ce29e61d21b0323..08ea379f81d16407ed5f82770b55a34bcf138da8 100644 --- a/doc/fluid/advanced_usage/deploy/anakin_arm_benchmark.md +++ b/doc/fluid/advanced_usage/deploy/anakin_arm_benchmark.md @@ -25,15 +25,15 @@ ### mobilenetv1 - |platform | Anakin (1) | Anakin (2) | Anakin (4) | ncnn (1) | ncnn (2) | ncnn (4) | TFlite (1) | TFlite (2) | TFlite (4)| + |platform | Anakin (1) | Anakin (2) | Anakin (4) | ncnn (1) | ncnn (2) | ncnn (4) | TFlite (1) | TFlite (2) | TFlite (4)| |:---: | :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| |麒麟960|107.7ms|61.1ms|38.2ms|152.8ms|85.2ms|51.9ms|152.6ms|nan|nan| |高通835|105.7ms|63.1ms|~~46.8ms~~|152.7ms|87.0ms|~~92.7ms~~|146.9ms|nan|nan| - |高通653|120.3ms|64.2ms|46.6ms|202.5ms|117.6ms|84.8ms|158.6ms|nan|nan| + |高通653|120.3ms|64.2ms|46.6ms|202.5ms|117.6ms|84.8ms|158.6ms|nan|nan| ### mobilenetv2 - |platform | Anakin (1) | Anakin (2) | Anakin (4) | ncnn (1) | ncnn (2) | ncnn (4) | TFlite (1) | TFlite (2) | TFlite (4)| + |platform | Anakin (1) | Anakin (2) | Anakin (4) | ncnn (1) | ncnn (2) | ncnn (4) | TFlite (1) | TFlite (2) | TFlite (4)| |:---: | :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| |麒麟960|93.1ms|53.9ms|34.8ms|144.4ms|84.3ms|55.3ms|100.6ms|nan|nan| |高通835|93.0ms|55.6ms|41.1ms|139.1ms|88.4ms|58.1ms|95.2ms|nan|nan| @@ -41,7 +41,7 @@ ### mobilenet-ssd - |platform | Anakin (1) | Anakin (2) | Anakin (4) | ncnn (1) | ncnn (2) | ncnn (4) | TFlite (1) | TFlite (2) | TFlite (4)| + |platform | Anakin (1) | Anakin (2) | Anakin (4) | ncnn (1) | ncnn (2) | ncnn (4) | TFlite (1) | TFlite (2) | TFlite (4)| |:---: | :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| |麒麟960|213.9ms|120.5ms|74.5ms|307.9ms|166.5ms|104.2ms|nan|nan|nan| |高通835|213.0ms|125.7ms|~~98.4ms~~|292.9ms|177.9ms|~~167.8ms~~|nan|nan|nan| @@ -49,8 +49,8 @@ ## How to run those Benchmark models? - 1. 首先, 使用[External Converter](./convert_paddle_to_anakin.md)对caffe model 进行转换 - 2. 然后将转换后的Anakin model和编译好的benchmark_arm 二进制文件通过'adb push'命令上传至测试机 - 3. 接着在测试机含有Anakin model的目录中运行'./benchmark_arm ./ anakin_model.anakin.bin 1 10 10 1' 命令 - 4. 最后,终端显示器上将会打印该模型的运行时间 - 5. 其中运行命令的参数个数和含义可以通过运行'./benchmark_arm'看到 +1. 首先, 使用[External Converter](../docs/Manual/Converter_en.md)对caffe model 进行转换 +2. 然后将转换后的Anakin model和编译好的benchmark_arm 二进制文件通过'adb push'命令上传至测试机 +3. 接着在测试机含有Anakin model的目录中运行'./benchmark_arm ./ anakin_model.anakin.bin 1 10 10 1' 命令 +4. 最后,终端显示器上将会打印该模型的运行时间 +5. 其中运行命令的参数个数和含义可以通过运行'./benchmark_arm'看到 diff --git a/doc/fluid/advanced_usage/deploy/anakin_example.md b/doc/fluid/advanced_usage/deploy/anakin_example.md index 3cd684982e96077fefa7dd7a3d8a0e79a428f5d1..e6b9e18fe2d64b3fda6382bb23a6a818a3e17fbe 100644 --- a/doc/fluid/advanced_usage/deploy/anakin_example.md +++ b/doc/fluid/advanced_usage/deploy/anakin_example.md @@ -1,14 +1,10 @@ -# Anakin 运行模型示例 - +# Example Anakin目前只支持NCHW的格式 - 示例文件在test/framework/net下 ## 在NV的GPU上运行CNN模型 - 示例文件为打开example_nv_cnn_net.cpp,整体流程如下: - -- 将模型的的path设置为anakin模型的路径,初始化NV平台的图对象。 anakin模型可以通过转换器转化caffe或Paddle的模型得到 +- 将模型的的path设置为anakin模型的路径,初始化NV平台的图对象。 anakin模型可以通过转换器转化caffe或fluid的模型得到 - 根据模型设置网络图的输入尺寸,进行图优化 - 根据优化后的网络图初始化网络执行器 - 取出网络的输入tensor,将数据拷贝到输入tensor @@ -18,21 +14,15 @@ 以NV平台为例演示Anakin框架的使用方法,注意编译时需要打开GPU编译开关 ## 在X86上运行RNN模型 - 示例文件为example_x86_rnn_net.cpp - 整体流程与在NV的GPU上运行CNN模型相似,不同之处如下: - - 使用X86标识初始化图对象和网络执行器对象 - rnn模型的输入尺寸是可变的,初始化图时的输入维度是维度的最大值,输入维度N代表总的词的个数。还需要设置输入tensor的seq_offset来标示这些词是如何划分为句子的,如{0,5,12}表示共有12个词,其中第0到第4个词是第一句话,第5到第11个词是第二句话 以X86平台为例演示Anakin框架的使用方法,注意编译时需要打开X86编译开关 ## 在NV的GPU上使用Anakin的线程池运行CNN模型 - 示例文件为example_nv_cnn_net_multi_thread.cpp ,示例使用worker的同步预测接口 - 整体流程与在NV的GPU上运行CNN模型相似,不同之处如下: - - 用模型地址和线程池大小初始化worker对象 - 将输入tensor注入任务队列,获得输出tensor diff --git a/doc/fluid/advanced_usage/deploy/anakin_gpu_benchmark.md b/doc/fluid/advanced_usage/deploy/anakin_gpu_benchmark.md index 1effc52312739a687e9452dc12cb3a9b7d936bc0..667f9396f1169a0d891b9e6b0e912aa5527ab0b8 100644 --- a/doc/fluid/advanced_usage/deploy/anakin_gpu_benchmark.md +++ b/doc/fluid/advanced_usage/deploy/anakin_gpu_benchmark.md @@ -1,28 +1,33 @@ -# Anakin GPU 性能测试 +# Anakin GPU Benchmark -## 环境: +## Machine: > CPU: `12-core Intel(R) Xeon(R) CPU E5-2620 v2 @2.10GHz` > GPU: `Tesla P4` > cuDNN: `v7` -## anakin 对比对象: +## Counterpart of anakin : -**`Anakin`** 将与高性能的推理引擎 **`NVIDIA TensorRT 3`** 进行比较 +The counterpart of **`Anakin`** is the acknowledged high performance inference engine **`NVIDIA TensorRT 3`** , The models which TensorRT 3 doesn't support we use the custom plugins to support. ## Benchmark Model -> 注意在性能测试之前,请先将测试model通过 `External Converter` 工具转换为Anakin model -> 对这些model,本文在GPU上进行单线程单GPU卡的性能测试。 +The following convolutional neural networks are tested with both `Anakin` and `TenorRT3`. + You can use pretrained caffe model or the model trained by youself. -- [Vgg16](#1) *caffe model 可以在[这儿](https://gist.github.com/jimmie33/27c1c0a7736ba66c2395)下载* -- [Yolo](#2) *caffe model 可以在[这儿](https://github.com/hojel/caffe-yolo-model)下载* -- [Resnet50](#3) *caffe model 可以在[这儿](https://github.com/KaimingHe/deep-residual-networks#models)下载* -- [Resnet101](#4) *caffe model 可以在[这儿](https://github.com/KaimingHe/deep-residual-networks#models)下载* -- [Mobilenet v1](#5) *caffe model 可以在[这儿](https://github.com/shicai/MobileNet-Caffe)下载* -- [Mobilenet v2](#6) *caffe model 可以在[这儿](https://github.com/shicai/MobileNet-Caffe)下载* -- [RNN](#7) *暂不支持* +> Please note that you should transform caffe model or others into anakin model with the help of [`external converter ->`](../docs/Manual/Converter_en.md) + + +- [Vgg16](#1) *caffe model can be found [here->](https://gist.github.com/jimmie33/27c1c0a7736ba66c2395)* +- [Yolo](#2) *caffe model can be found [here->](https://github.com/hojel/caffe-yolo-model)* +- [Resnet50](#3) *caffe model can be found [here->](https://github.com/KaimingHe/deep-residual-networks#models)* +- [Resnet101](#4) *caffe model can be found [here->](https://github.com/KaimingHe/deep-residual-networks#models)* +- [Mobilenet v1](#5) *caffe model can be found [here->](https://github.com/shicai/MobileNet-Caffe)* +- [Mobilenet v2](#6) *caffe model can be found [here->](https://github.com/shicai/MobileNet-Caffe)* +- [RNN](#7) *not support yet* + +We tested them on single-GPU with single-thread. ### VGG16 @@ -157,9 +162,9 @@ | 8 | 421 | 351 | | 32 | 637 | 551 | -## How to run those Benchmark models +## How to run those Benchmark models? -1. 首先, 使用[External Converter](./convert_paddle_to_anakin.md)对caffe model 进行转换 -2. 然后跳转至 *source_root/benchmark/CNN* 目录下,使用 'mkdir ./models'创建存放模型的目录,并将转换好的Anakin模型放在该目录下 -3. 运行脚本 `sh run.sh`,运行结束后,该模型的运行时间将会显示到终端上 -4. 如果你想获取每层OP的运行时间,你只用将 CMakeLists.txt 中的`ENABLE_OP_TIMER` 设置为 `YES` 即可 +> 1. At first, you should parse the caffe model with [`external converter`](https://github.com/PaddlePaddle/Anakin/blob/b95f31e19993a192e7428b4fcf852b9fe9860e5f/docs/Manual/Converter_en.md). +> 2. Switch to *source_root/benchmark/CNN* directory. Use 'mkdir ./models' to create ./models and put anakin models into this file. +> 3. Use command 'sh run.sh', we will create files in logs to save model log with different batch size. Finally, model latency summary will be displayed on the screen. +> 4. If you want to get more detailed information with op time, you can modify CMakeLists.txt with setting `ENABLE_OP_TIMER` to `YES`, then recompile and run. You will find detailed information in model log file. diff --git a/doc/fluid/advanced_usage/deploy/anakin_parser_design.md b/doc/fluid/advanced_usage/deploy/anakin_parser_design.md deleted file mode 100644 index e2ec0c68dea031bf50c3adb37a7795a7f380eca0..0000000000000000000000000000000000000000 --- a/doc/fluid/advanced_usage/deploy/anakin_parser_design.md +++ /dev/null @@ -1,92 +0,0 @@ -# Parser的编写指南 - - Parser是一种网络框架转换工具,将其他框架如Caffe、TensorFlow的网络结构转换为Anakin网络结构图,然后对转换后的Anakin图进行预测处理 - - 本文主要介绍Parser功能的框架结构和根据已有的网络框架改写Parser,以解析得到Anakin框架图,进行Anakin预测 - - 下文称Anakin为AK,运算操作为OP,本文参考TensorFlow的Parser编写,参考代码目录为tools/external_converter_v2/parser/tensorflow - -## Parser的功能和执行流程 - - Parser功能是将其他深度学习框架(如Caffe,TensorFlow,ONNX)的模型转换为AK的模型 - - 对AK的作用是屏蔽不同框架间的差异,这种差异包括模型存储、OP的定义、图差异 - - 因此Parser的执行流程是: - - - 将源框架的模型载入Parser - - 将原框架的图解析为AK中的OP节点和OP节点的连接关系 - - 进行OP定义的转换和图优化 - - 将符合AK标准的图写入protobuf - -## Parser的目录结构 - - Parser工具在tools/external_converter_v2/parser目录下 - - Parser的目录主要包含3部分: - - - Parser的运行配置文件包括 config.py, config.yaml, converter.py, 用户只用执行converter.py,Parser就会按照config.yaml中的声明去解析模型 - - Parser的公共定义,包括operations,pbs,proto三个目录。Parser的公共工具函数 graph*.py logger.py utils.py - - 各个框架对应的Parser,其目录的命名方式为框架名,如Caffe, TensorFlow - -## Parser的编写流程 - -### 1、声明你的Parser - - - 在config.yaml中填写你的Parser运行的必要信息,包括ProtoPath和SavePath等。OPTIONS/Framework改为你的Parser的类型,TARGET下填写对应的参数列表 - - 添加你的Parser目录,如TensorFlow,导出你的Parser符号。注意,Parser的框架默认调用你的Parser类中的__call__方法来执行解析,这个方法需要返回填写完毕的GraphProtoIO对象 - - 在config.py中Configuration下__init__函数中增加对你的Parser的调用,将yaml中读取的配置信息传给你的Parser,此处调用你的Parser中的__init__方法 - -### 2、添加你的Parser主体 - - 可以参考parser_tf.py - - - 你需要在Parser主体构造时获取模型路径,input,ouput名字等解析必须的信息 - - 在__call__中返回填写好的GraphProtoIO对象,该对象为填写protobuf的辅助工具 - - 建议Parser的解析过程分成三部分,先将原框架的模型载入并转换为一种便于修改的中间的图形式;对中间图修改使得图满足AK的要求;将满足要求的中间图利用NodeProtoIO和GraphProtoIO这两个辅助类填入protobuf,具体细节可以参考parser_tf - -### 3、读取原始模型,并将模型转换为中间类型 - - 可以参考parse_tf_2_med.py - - - 这一步与原始框架结合紧密,你可能需要import原始框架的工具函数来完成模型的裁剪、固定、加载等操作 - - 大部分的框架都是使用tensor来连接OP的,但AK中是OP直接相连,这点需要注意 - - AK的shape默认是4维的,有的参数的shape不足4维,需要Parser补全 - -### 4、对中间类型的图进行优化 - - 可以参考med_graph.py - - - 由于AK不支持普通OP多输出的情况,需要在多输出的OP后面补上Splite类型的OP节点 - - 对于Convlution后接Batchnorm这种可以合并又不会导致OP定义改变的情况,需要Parser在这一步做掉 - - AK规定所有的输入类型OP的名字必须是input_x这种命名方式,其中x为从0开始的数字 - -### 5、将中间类型的图以GraphProtoIO的方式保存 - - 可以参考parse_med_2_ak.py 和 parser_tf.py - - - 你首先需要构造Node节点,Node节点的名字是OP的名字(如conv2d_1_a_0),Node节点中OP成员变量的名字是Node节点的类型(如Convlution) - - Node节点需要按照输入的顺序用Node的add_in方法填写输入Node的名字,add_out方法按顺序填写输出Node的名字 - - 通过调用GraphProtoIO的add_node方法将构造好的Node的__call__方法的返回值作为参数,将Node节点加入AK的graph中 - - 调用GraphProtoIO的add_in_edge和add_out_edge完成AK图中OP间关系的构建。如果Node中的in和out填写正确,你也可以通过调用GraphProtoIO的format_edge_from_nodes方法完成这个工作 - - AK的模型需要Parser给出输出Node的名字,使用GraphProtoIO的add_out方法填写输出Node的名字 - -### 6、检查模型解析的正确性 - - - 默认的config.yaml配置会在解析结束后启动一个web服务器展示解析后的AK模型图,你需要对比原框架的模型图进行验证。这里最容易出现的错误是边关系的错误,表现为图非常乱,你需要逐条边地检查错误;第二个容易出错的地方是参数漏填,需要你检查OP中的属性 - - 将解析后的模型放入AK中执行,使用相同的输入,原框架与AK有相同的输出。若果输出不一致可以开启AK的DEBUG模式,在net.cpp中将没层的输出打印;如果AK在解析阶段陷入死循环,大概率是边的关系出错 - -## 如何添加新OP - - - 需要在AK代码中加入该OP的实现,包括对应设备Saber的OP,Saber单测和Framework中的OP - - 根据Framework的OP在ops.py中添加Parser公共的OP定义 - - 从原框架的模型中解析出该OP的节点,并在AK的graph中填入该OP节点 - -## AK模型与其他框架模型的不同之处 - - + AK模型与caffe的模型相似,因此与其他模型有很多不同的地方,需要Parser在解析过程中处理掉 - + 最大的不同是与PaddlePaddle或TensorFlow的模型中OP粒度很细,而AK的模型中OP的粒度很粗(目的是为了节省访存开销)。这会导致解析这些框架的模型时存在大量的合并操作 - + 其次是OP的行为不同,如TensorFlow中Pooling默认都是exclusive的,而AK中是inclusive的。TensorFlow的Padding,如果是奇数pad,则在右方和下方多pad,而AK是在左方和上方多Pad - + AK默认的布局是NCHW,如果其他框架的OP是其他形式的,需要在Parser中做weights的布局转换,并处理reshape的问题 - + AK中有的weights是需要预先做布局转换的(如GRU,LSTM),AK中也支持同一OP的不同算法,如(GRU,Pooling) - diff --git a/doc/fluid/advanced_usage/deploy/anakin_run_on_arm.md b/doc/fluid/advanced_usage/deploy/anakin_run_on_arm.md deleted file mode 100644 index cdebd4ae090668ea2f4d417da99f7e50e34e323e..0000000000000000000000000000000000000000 --- a/doc/fluid/advanced_usage/deploy/anakin_run_on_arm.md +++ /dev/null @@ -1,193 +0,0 @@ -## ARM 源码编译 Anakin ## - -目前Anakin支持ARM Android平台,采用Android NDK交叉编译工具链,已在mac os和centos上编译和测试通过。 - -### 安装概览 ### - -* [系统需求](#0001) -* [安装第三方依赖](#0002) -* [Anakin源码编译](#0003) -* [验证安装](#0004) - - -### 1. 系统需求 ### - -* 宿主机: linux, mac -* cmake 3.8.2+ -* Android NDK r14, Linux 版本[从这里下载](https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip) - -### 2. 安装第三方依赖 ### - -- 2.1 protobuf3.4.0 - - 源码从这里[下载](https://github.com/google/protobuf/releases/tag/v3.4.0) - - - 2.1.1 为宿主机编译protobuf - - ```bash - $ tar -xzf protobuf-3.4.0.tar.gz - $ cd protobuf-3.4.0 - $ ./autogen.sh - $ ./configure - $ make - $ make check - $ make install - ``` - - 上述 $make install 执行后,可在 `/usr/local/include/google` 找到 libprotobuf 所需的头文件,将整个google文件夹拷贝至Anakin/third-party/arm-android/protobuf/下, 然后将已经生成文件清除。 - - 如有问题,请点[这里](https://github.com/google/protobuf/blob/v3.4.0/src/README.md)。 - - ```bash - $ make distclean - ``` - - - 2.1.1 交叉编译Android`armeabi-v7a`的protobuf,注意设置ANDROID_NDK的路径,以及ARCH_ABI、HOSTOSN的值 - - ```bash - - $ export ANDROID_NDK=your_ndk_path - $ ARCH_ABI="arm-linux-androideabi-4.9" - $ HOSTOSN="darwin-x86_64" - $ export SYSROOT=$ANDROID_NDK/platforms/android-9/arch-arm - $ export PREBUILT=$ANDROID_NDK/toolchains/$ARCH_ABI - $ export LDFLAGS="--sysroot=$SYSROOT" - $ export LD="$ANDROID_NDK/toolchains/$ARCH_ABI/prebuilt/$HOSTOSN/arm-linux-androideabi/bin/ld $LDFLAGS" - $ export LIBS="-llog $ANDROID_NDK/sources/cxx-stl/gnu-libstdc++/4.9/libs/armeabi-v7a/libgnustl_static.a" - $ export CPPFLAGS="" - $ export INCLUDES="-I$ANDROID_NDK/sources/cxx-stl/gnu-libstdc++/4.9/include/ -I$ANDROID_NDK/platforms/android-9/arch-arm/usr/include/ -I$ANDROID_NDK/sources/cxx-stl/gnu-libstdc++/4.9/libs/armeabi-v7a/include/" - $ export CXXFLAGS="-march=armv7-a -mfloat-abi=softfp -DGOOGLE_PROTOBUF_NO_RTTI --sysroot=$SYSROOT" - $ export CCFLAGS="$CXXFLAGS" - $ export CXX="$PREBUILT/prebuilt/$HOSTOSN/bin/arm-linux-androideabi-g++ $CXXFLAGS" - $ export CC="$CXX" - $ export RANLIB="$ANDROID_NDK/toolchains/$ARCH_ABI/prebuilt/$HOSTOSN/bin/arm-linux-androideabi-ranlib" - $ ./autogen.sh - $ ./configure --host=arm-linux-androideabi --with-sysroot=$SYSROOT --enable-cross-compile --with-protoc=protoc --disable-shared CXX="$CXX" CC="$CC" LD="$LD" - $ make - ``` - - 编译生成 *.a 静态库,若希望编译*.so 动态链接库 ,请在./configure参数中改--disable-shared为--disable-static --enable-shared - - 生成文件在`src/.libs/`下,将生成的文件拷贝至`Anakin/third-party/arm-android/protobuf/lib`下 - - 在[cmake](../../cmake/find_modules.cmake)中更新`ARM_RPOTO_ROOT`的路径。 - - ```cmake - set(ARM_RPOTO_ROOT "${CMAKE_SOURCE_DIR}/third-party/arm-android/protobuf") - ``` - -- 2.2 opencv 2.4.3+(optional) - - Anakin只在examples示例中使用opencv - - Android系统的opencv从[这里下载](https://opencv.org/releases.html) - - 解压后将 `3rdparty/libs/armeabi-v7a`中的库文件拷贝到`libs/armeabi-v7a` - - 在[cmake](../../cmake/find_modules.cmake)中搜索`anakin_find_opencv` - - 并设置 `include_directories` 和 `LINK_DIRECTORIES`为自己安装的库的路径 - - ```cmake - include_directories(${CMAKE_SOURCE_DIR}/third-party/arm-android/opencv/sdk/native/jni/include/) - LINK_DIRECTORIES(${CMAKE_SOURCE_DIR}/third-party/arm-android/opencv/sdk/native/libs/armeabi-v7a/) - ``` - -### 3. Anakin源码编译 ### - -#### 编译Android版本 - -克隆[源码](https://github.com/PaddlePaddle/Anakin/tree/arm) - -```bash - cd your_dir - git clone https://github.com/PaddlePaddle/Anakin.git - cd Anakin - git fetch origin arm - git checkout arm -``` - -修改`android_build.sh` - - - 修改NDK路径 - - ```bash - #modify "your_ndk_path" to your NDK path - export ANDROID_NDK=your_ndk_path - ``` - - - 修改ARM 处理器架构 - - 对于32位ARM处理器, 将ANDROID_ABI 设置为 `armeabi-v7a with NEON` - 对于64位ARM处理器, 可以将ANDROID_ABI 设置为 `armeabi-v7a with NEON`或者`arm64-v8a` - 目前我们只支持 `armeabi-v7a with NEON`;`arm64-v8a` 还在开发中 - - ```bash - -DANDROID_ABI="armeabi-v7a with NEON" - ``` - -- 设置Android API - - 根据Android系统的版本设置API level, 例如API Level 21 -> Android 5.0.1 - - ```bash - -DANDROID_NATIVE_API_LEVEL=21 - ``` - -- 选择编译静态库或动态库 - - 设置`BUILD_SHARED=NO`编译静态库 - 设置`BUILD_SHARED=YES`编译动态库 - - ```bash - -DBUILD_SHARED=NO - ``` - -- OpenMP多线程支持 - - 设置`USE_OPENMP=YES`开启OpenMP多线程 - - ```bash - -DUSE_OPENMP=YES - ``` - -- 编译单测文件 - - 设置`BUILD_WITH_UNIT_TEST=YES`将会编译单测文件 - - ```bash - -DBUILD_WITH_UNIT_TEST=YES - ``` - -- 编译示例文件 - - 设置`BUILD_EXAMPLES=YES`将会编译示例文件 - ```bash - -DBUILD_EXAMPLES=YES - ``` - -- 开启opencv - - 如果使用opencv,设置`USE_OPENCV=YES` - - ```bash - -DUSE_OPENCV=YES - ``` - -- 开始编译 - - 运行脚本 `android_build.sh` 将自动编译Anakin - - ```bash - ./android_build.sh - ``` - -### 4. 验证安装 ### - -编译好的库会放在目录`${Anakin_root}/output`下; - -编译好的单测文件会放在`${Anakin_root}/output/unit_test`目录下; - -编译好的示例文件会放在`${Anakin_root}/output/examples`目录下。 - -对于Android系统,打开设备的调试模式,通过ADB可以访问的目录是`data/local/tmp`,通过ADB push将测试文件、模型和数据发送到设备目录, 运行测试文件。 diff --git a/doc/fluid/advanced_usage/deploy/anakin_tutorial.md b/doc/fluid/advanced_usage/deploy/anakin_tutorial.md index af2186146fc6ddad47ad82bd4da5b4ce95a49b5c..5efbc89abd469871b318c306e8cb03dd95f0c85b 100644 --- a/doc/fluid/advanced_usage/deploy/anakin_tutorial.md +++ b/doc/fluid/advanced_usage/deploy/anakin_tutorial.md @@ -1,7 +1,7 @@ # Anakin 使用教程 ## 本教程将会简略的介绍Anakin的工作原理,一些基本的Anakin API,以及如何调用这些API。 - + ## 内容 ### - [Anakin的工作原理](#principle) @@ -14,38 +14,31 @@ 用Anakin来进行前向计算主要分为三个步骤: - - 将外部模型通过[Anakin Parser](Converter_ch.md)解析为Anakin模型 - 在使用Anakin之前,用户必须将所有其他模型转换成Anakin模型,我们提供了转换脚本,用户可通过[Anakin Parser](Converter_ch.md)进行模型转换。 - - 生成Anakin计算图 - 加载Anakin模型生成原始计算图,然后需要对原始计算图进行优化。你只需要调用相应的API优化即可。 - - 执行计算图 - Anakin会选择不同硬件平台执行计算图。 +- 将外部模型通过[Anakin Parser](Converter_ch.md)解析为Anakin模型 + 在使用Anakin之前,用户必须将所有其他模型转换成Anakin模型,我们提供了转换脚本,用户可通过[Anakin Parser](Converter_ch.md)进行模型转换。 +- 生成Anakin计算图 + 加载Anakin模型生成原始计算图,然后需要对原始计算图进行优化。你只需要调用相应的API优化即可。 +- 执行计算图 + Anakin会选择不同硬件平台执行计算图。 ## Anakin APIs ### - ### Tensor #### -`Tensor`提供基础的数据操作和管理,为ops提供统一的数据接口。`Tensor`包含以下几个属性: - -- Buffer - 数据存储区 -- Shape - 数据的维度信息 -- Event - 用于异步计算的同步 +`Tensor`提供基础的数据操作和管理,为ops提供统一的数据接口。`Tensor`包含以下几个属性: -`Tensor`类包含三个`Shape`对象, 分别是`_shape`, `_valid_shape`和 `offset` +- Buffer + 数据存储区 +- Shape + 数据的维度信息 +- Event + 用于异步计算的同步 - - `_shape`为`tensor`真正空间信息 - - `_valid_shape`表示当前`tensor`使用的空间信息 - - `tensor`使用的空间信息 - - `_offset`表示当前`tensor`数据指针相对于真正数据空间的信息 + `Tensor` 类包含三个`Shape`对象, 分别是`_shape`, `_valid_shape`和 `offset`。 `_shape`为`tensor`真正空间信息,`_valid_shape`表示当前`tensor`使用的空间信息, `_offset`表示当前`tensor`数据指针相对于真正数据空间的信息。 `Tensor`不同维度与分别与数学中的向量、矩阵等相对应如下表所示。 -`Tensor`不同维度与分别与数学中的向量、矩阵等相对应如下表所示 Dimentions | Math entity | -:----: | :----: + :----: | :----: 1 | vector 2 | matrix 3 | 3-tensor @@ -64,202 +57,195 @@ n | n-tensor }; ``` -TargetType是平台类型,如X86,GPU等等,在Anakin内部有相应的标识与之对应;datatype是普通的数据类型,在Anakin内部也有相应的标志与之对应 - -[LayOutType](#layout)是数据分布类型,如batch x channel x height x width [NxCxHxW], 在Anakin内部用一个struct来标识 - -Anakin中数据类型与基本数据类型的对应如下: - - 1. TargetType +TargetType是平台类型,如X86,GPU等等,在Anakin内部有相应的标识与之对应;datatype是普通的数据类型,在Anakin内部也有相应的标志与之对应;[LayOutType](#layout)是数据分布类型,如batch x channel x height x width [NxCxHxW], 在Anakin内部用一个struct来标识。 Anakin中数据类型与基本数据类型的对应如下: - Anakin TargetType | platform - :----: | :----: - NV | NVIDIA GPU - ARM | ARM - AMD | AMD GPU - X86 | X86 - NVHX86 | NVIDIA GPU with Pinned Memory +1. TargetType - 2. DataType + Anakin TargetType | platform + :----: | :----:| + NV | NVIDIA GPU + ARM | ARM + AMD | AMD GPU + X86 | X86 + NVHX86 | NVIDIA GPU with Pinned Memory - Anakin DataType | C++ | Description - :---: | :---: | :---: - AK_HALF | short | fp16 - AK_FLOAT | float | fp32 - AK_DOUBLE | double | fp64 - AK_INT8 | char | int8 - AK_INT16 | short | int16 - AK_INT32 | int | int32 - AK_INT64 | long | int64 - AK_UINT8 | unsigned char | uint8 - AK_UINT16 | unsigned short | uint8 - AK_UINT32 | unsigned int | uint32 - AK_STRING | std::string | / - AK_BOOL | bool | / - AK_SHAPE | / | Anakin Shape - AK_TENSOR | / | Anakin Tensor +2. DataType - 3. LayOutType +Anakin DataType | C++ | Description +:---: | :---: | :---: | +AK_HALF | short | fp16 +AK_FLOAT | float | fp32 +AK_DOUBLE | double | fp64 +AK_INT8 | char | int8 +AK_INT16 | short | int16 +AK_INT32 | int | int32 +AK_INT64 | long | int64 +AK_UINT8 | unsigned char | uint8 +AK_UINT16 | unsigned short | uint8 +AK_UINT32 | unsigned int | uint32 +AK_STRING | std::string | / +AK_BOOL | bool | / +AK_SHAPE | / | Anakin Shape +AK_TENSOR | / | Anakin Tensor - Anakin LayOutType ( Tensor LayOut ) | Tensor Dimention | Tensor Support | Op Support - :---: | :---: | :---: | :---: - W | 1-D | YES | NO - HW | 2-D | YES | NO - WH | 2-D | YES | NO - NW | 2-D | YES | YES - NHW | 3-D | YES |YES - NCHW ( default ) | 4-D | YES | YES - NHWC | 4-D | YES | NO - NCHW_C4 | 5-D | YES | YES - 理论上,Anakin支持申明1维以上的tensor,但是对于Anakin中的Op来说,只支持NW、NHW、NCHW、NCHW_C4这四种LayOut,其中NCHW是默认的LayOuteType,NCHW_C4是专门针对于int8这种数据类型的。 +3. LayOutType - 例子 +Anakin LayOutType ( Tensor LayOut ) | Tensor Dimention | Tensor Support | Op Support +:---: | :---: | :---: | :---: | +W | 1-D | YES | NO +HW | 2-D | YES | NO +WH | 2-D | YES | NO +NW | 2-D | YES | YES +NHW | 3-D | YES |YES +NCHW ( default ) | 4-D | YES | YES +NHWC | 4-D | YES | NO +NCHW_C4 | 5-D | YES | YES - 下面的代码将展示如何使用tensor, 我们建议先看看这些示例。 - 要想获得更多关于tensor的信息, 请参考 *soure_path/core/tensor.h* +理论上,Anakin支持申明1维以上的tensor,但是对于Anakin中的Op来说,只支持NW、NHW、NCHW、NCHW_C4这四种LayOut,其中NCHW是默认的LayOutType,NCHW_C4是专门针对于int8这种数据类型的。 - > 1. 使用shape对象初始化tensor - ```c++ - //create a null tensor. A null tensor holds for nothing. - //tensor's buffer is resident at CPU and its datatype is AK_FLOAT. - //tensor's Layout is NCHW(default) - Tensor mytensor; +例子 - //1. using shape object to create a tensor. - Shape shape1(NUM); //1-D shape. NUM is the number of dimention. - Tensor mytensor1(shape1); //1-D tensor. +> 下面的代码将展示如何使用tensor, 我们建议先看看这些示例。 - // A 4-D shape - Shape shape2(N, C, H, W); // batch x channel x height x width - ``` +> 要想获得更多关于tensor的信息, 请参考 *soure_path/core/tensor.h* - >`注意:Shape的维度必须和tensor的`[LayoutType](#layout)`相同,比如Shape(N,C,H,W), 那么Tensor的 LayoutType必须是NCHW,否则会出错。如下列代码所示` +> 1. 使用shape对象初始化tensor +``` c++ + //create a null tensor. A null tensor holds for nothing. + //tensor's buffer is resident at CPU and its datatype is AK_FLOAT. + //tensor's Layout is NCHW(default) + Tensor mytensor; - ```c++ - // A 4-D tensor. - Tensor mytensor2(shape2); //right + //1. using shape object to create a tensor. + Shape shape1(NUM); //1-D shape. NUM is the number of dimention. + Tensor mytensor1(shape1); //1-D tensor. - //A 4-D tensor which is resident at GPU and its datatype is AK_INT8 - Tensor mytensor3(shape2); //right - - Tensor mytensor4(shape2); //wrong!! shape's dimetion must be equal to tensor's Layout. - Tensor mytensor5(shape2); //wrong!!!! - - ``` + // A 4-D shape + Shape shape2(N, C, H, W); // batch x channel x height x width +``` - > 2. 使用现有的数据和shape初始化tensor +>`注意:Shape的维度必须和tensor的`[LayoutType](#layout)`相同,比如Shape(N,C,H,W), 那么Tensor的 LayoutType必须是NCHW,否则会出错。如下列代码所示` - ```c++ - /** - * A construtor of Tensor. - * data_ptr is a pointer to any data type of data - * TargetType is type of a platform [Anakin TargetType] - * id : device id - * shape: a Anakin shape - */ - Tensor(Dtype* data_ptr, TargetType_t target, int id, Shape shape); +```c++ + // A 4-D tensor. + Tensor mytensor2(shape2); //right - //using existing data feed to a tensor - Tensor mytensor(data_ptr, TargetType, device_id, shape); //shape must has dimention (N, C, H, W). + //A 4-D tensor which is resident at GPU and its datatype is AK_INT8 + Tensor mytensor3(shape2); //right + + Tensor mytensor4(shape2); //wrong!! shape's dimetion must be equal to tensor's Layout. + Tensor mytensor5(shape2); //wrong!!!! - ``` +``` - > 3. 使用tensor初始化tensor +> 2. 使用现有的数据和shape初始化tensor - ```c++ - Tensor tensor(exist_tensor); - ``` +```c++ - > 提示: 你可以用` typedef Tensor Tensor4d_X86 `方便定义tensor + /** + * A construtor of Tensor. + * data_ptr is a pointer to any data type of data + * TargetType is type of a platform [Anakin TargetType] + * id : device id + * shape: a Anakin shape + */ + Tensor(Dtype* data_ptr, TargetType_t target, int id, Shape shape); -#### 填充tensor数据区 + //using existing data feed to a tensor + Tensor mytensor(data_ptr, TargetType, device_id, shape); //shape must has dimention (N, C, H, W). -填充数据区得看你申明tensor的方式, 下面展示了如何填充tensor的数据区。 +``` -首先来看看tensor的四种声明方式: +> 3. 使用tensor初始化tensor ```c++ - 1. Tensor mytensor; - 2. Tensor mytensor1(shape1); - 3. Tensor mytensor(data_ptr, TargetType, device_id, shape); - 4. Tensor tensor(exist_tensor); + Tensor tensor(exist_tensor); ``` -相关的声明方式的数据填充方法如下: -- 声明一个空的tensor,此时没有为其分配内存,所以,我们需要手动的为其分配内存。 +> 提示: 你可以用` typedef Tensor Tensor4d_X86 `方便定义tensor -```c++ - //parama shape - mytensor.re_alloc(Shape shape); +#### 填充tensor数据区 - //Get writable pointer to mytensor. - //parama index (int): where you start to write. - //Dtype is your data type such int, float or double. - Dtype *p = mytensor.mutable_data(index/*=0*/); - //write data to mytensor - for(int i = 0; i < mytensor.size(); i++){ - p[i] = 1.0f; - } - //do something ... -``` -- 这种声明方式会自动分配内存 +填充数据区得看你申明tensor的方式, 下面展示了如何填充tensor的数据区。 ```c++ - //Get writable pointer to mytensor. - //parama index (int): where you start to write. - //Dtype is your data type such int, float or double. - Dtype *p = mytensor1.mutable_data(index/*=0*/); - //write data to mytensor - for(int i = 0; i < mytensor.size(); i++){ - p[i] = 1.0f; - } - //do something ... -``` +首先来看看tensor的四种声明方式: -- 在该种声明方式中,我们仍不需要手动为其分配内存。但在构造函数内部是否为其分配内存,得依情况而定。如果data_ptr和申明的 - tensor都在都一个目标平台上,那么该tensor就会与data_ptr共享内存空间,相反,如果他们不在同一个平台上(如data_ptr在X86上,而 - tensor在GPU上),那么此时tensor就会开辟一个新的内存空间,并将data_ptr所指向的数据拷贝到tensor的buffer中。 +1. Tensor mytensor; +2. Tensor mytensor1(shape1); +3. Tensor mytensor(data_ptr, TargetType, device_id, shape); +4. Tensor tensor(exist_tensor); -```c++ - //Get writable pointer to mytensor. - //parama index (int): where you start to write. - //Dtype is your data type such int, float or double. - Dtype *p = mytensor.mutable_data(index/*=0*/); - //write data to mytensor - for(int i = 0; i < mytensor.size(); i++){ - p[i] = 1.0f; - } - //do something ... -``` -- 该种方式仍不需要手动分配内存 +相关的声明方式的数据填充方法如下: -```c++ - //Get writable pointer to mytensor. - //parama index (int): where you start to write. - //Dtype is your data type such int, float or double. - Dtype *p = mytensor.mutable_data(index/*=0*/); - //write data to mytensor - for(int i = 0; i < mytensor.size(); i++){ - p[i] = 1.0f; - } - //do something ... -``` +1:声明一个空的tensor,此时没有为其分配内存,所以,我们需要手动的为其分配内存。 + + //parama shape + mytensor.re_alloc(Shape shape); + + //Get writable pointer to mytensor. + //parama index (int): where you start to write. + //Dtype is your data type such int, float or double. + Dtype *p = mytensor.mutable_data(index/*=0*/); + //write data to mytensor + for(int i = 0; i < mytensor.size(); i++){ + p[i] = 1.0f; + } + //do something ... + +2: 这种声明方式会自动分配内存 + + //Get writable pointer to mytensor. + //parama index (int): where you start to write. + //Dtype is your data type such int, float or double. + Dtype *p = mytensor1.mutable_data(index/*=0*/); + //write data to mytensor + for(int i = 0; i < mytensor.size(); i++){ + p[i] = 1.0f; + } + //do something ... + + +3:在该种声明方式中,我们仍不需要手动为其分配内存。但在构造函数内部是否为其分配内存,得依情况而定。如果data_ptr和申明的 +tensor都在都一个目标平台上,那么该tensor就会与data_ptr共享内存空间,相反,如果他们不在同一个平台上(如data_ptr在X86上,而 +tensor在GPU上),那么此时tensor就会开辟一个新的内存空间,并将data_ptr所指向的数据拷贝到tensor的buffer中。 + + //Get writable pointer to mytensor. + //parama index (int): where you start to write. + //Dtype is your data type such int, float or double. + Dtype *p = mytensor.mutable_data(index/*=0*/); + //write data to mytensor + for(int i = 0; i < mytensor.size(); i++){ + p[i] = 1.0f; + } + //do something ... -- 另外,你还可以获取一个tensor的可读指针,示例如下: +4:该种方式仍不需要手动分配内存 -```c++ + //Get writable pointer to mytensor. + //parama index (int): where you start to write. + //Dtype is your data type such int, float or double. + Dtype *p = mytensor.mutable_data(index/*=0*/); + //write data to mytensor + for(int i = 0; i < mytensor.size(); i++){ + p[i] = 1.0f; + } + //do something ... + + +另外,你还可以获取一个tensor的可读指针,示例如下: //Get read-only pointer to mytensor. //parama index (int): where you start to read. //Dtype is your data type such int, float or double. - Dtype *p = mytensor.data(index/*=0*/); + Dtype *p = mytensor.data(index/*=0*/); //do something ... ``` @@ -268,75 +254,77 @@ Anakin中数据类型与基本数据类型的对应如下: #### 获取tensor的shape ```c++ - //some declarations - // ... - Shape shape = mytensor.shape(); +//some declarations +// ... +Shape shape = mytensor.shape(); - //Get a first dimetion size of tesor, if it has. - int d1 = shape[0]; +//Get a first dimetion size of tesor, if it has. +int d1 = shape[0]; - //Get a second dimention size of tensor, if it has. - int d2 = shape[1]; +//Get a second dimention size of tensor, if it has. +int d2 = shape[1]; - ... +... - //Get a n-th dimention size of tensor, if it has. - int dn = shape[n-1]; +//Get a n-th dimention size of tensor, if it has. +int dn = shape[n-1]; - //Get a tensor's dimention - int dims = mytensor.dims(); +//Get a tensor's dimention +int dims = mytensor.dims(); - //Get the size of tensor. - //size = d1 x d2 x ... x dn. - int size = mytensor.size(); +//Get the size of tensor. +//size = d1 x d2 x ... x dn. +int size = mytensor.size(); - //Get the size of tensor at interval [Di, Dj) - // form i-th dimention to j-th dimention, but not including the j-th dimention. - // which means di x (di+1) x ... x (dj -1) - int size = mytensor.count(start, end); +//Get the size of tensor at interval [Di, Dj) +// form i-th dimention to j-th dimention, but not including the j-th dimention. +// which means di x (di+1) x ... x (dj -1) +int size = mytensor.count(start, end); ``` #### 设置tensor的shape 我们可以用tensor的成员函数set_shape来设置tensor的shape。 下面是set_shape的定义 + ```c++ - /** - * \brief set a tensor's shape - * \param valid_shape [a Shape object] - * \param shape [a Shape object] - * \param offset [a Shape object] - * \return the status of this operation, that means whether it success * or not. - */ - SaberStatus set_shape(Shape valid_shape, Shape shape = Shape::zero(TensorAPI::layout_dims::value), Shape offset = Shape::minusone(TensorAPI::layout_dims::value)); +/** + * \brief set a tensor's shape + * \param valid_shape [a Shape object] + * \param shape [a Shape object] + * \param offset [a Shape object] + * \return the status of this operation, that means whether it success * or not. + */ +SaberStatus set_shape(Shape valid_shape, Shape shape = Shape::zero(TensorAPI::layout_dims::value), Shape offset = Shape::minusone(TensorAPI::layout_dims::value)); ``` 这个成员函数只设置tensor的shape。这些shape对象(valid_shape, shape, offset)的[LayOutType](#layout)必须和当前的tensor的相应三个shape对象的LayOutType相同,如果不同就会出错,返回SaberInvalidValue。 如果相同,那么将成功设置tensor的shape。 ```c++ - // some declarations - // ... - //valid_shape, shape , offset are Shape object; - //All these Shape object's LayOutType must be equal to mytensor's. - mytensor.set_shape(valid_shape, shape, offset); +// some declarations +// ... +//valid_shape, shape , offset are Shape object; +//All these Shape object's LayOutType must be equal to mytensor's. +mytensor.set_shape(valid_shape, shape, offset); ``` #### 重置 tensor的shape ```c++ - //some declarations - Shape shape, valid_shape, offset; +//some declarations +Shape shape, valid_shape, offset; - //do some initializations - ... - mytensor.reshape(valid_shape, shape, offset); +//do some initializations +... +mytensor.reshape(valid_shape, shape, offset); ``` 注意: Reshape操作仍然需要shape的[LayOutType](#layout) 与tensor的相同 + ### Graph ### `Graph`类负责加载Anakin模型生成计算图、对图进行优化、存储模型等操作。 @@ -347,61 +335,62 @@ Anakin中数据类型与基本数据类型的对应如下: ```c++ - template - class Graph ... /* inherit other class*/{ - - //some implements - ... +template +class Graph ... /* inherit other class*/{ + + //some implements + ... - }; +}; ``` 前面已经介绍过[TargetType](#target)和[DataType](#datatype)是Anakin内部自定义数据类型。[TargetType](#target)表示平台类型 (如NV、X86), [DataType](#datatype)是Anakin基本数据类型与C++/C中的基本数据类型相对应。 [Precision](#precision)为op所支持的精度类型, 稍后我们在介绍它。 + ```c++ - //Create a empty graph object. - Graph graph = Graph tmp(); +//Create a empty graph object. +Graph graph = Graph tmp(); - //Create a pointer to a empty graph. - Graph *graph = new Graph(); +//Create a pointer to a empty graph. +Graph *graph = new Graph(); - //Create a pointer to a empty graph. - auto graph = new Graph(); +//Create a pointer to a empty graph. +auto graph = new Graph(); ``` #### 加载 Anakin 模型 ```c++ - //some declarations - ... - auto graph = new Graph(); - std::string model_path = "the/path/to/where/your/models/are"; - const char *model_path1 = "the/path/to/where/your/models/are"; - - //Loading Anakin model to generate a compute graph. - auto status = graph->load(model_path); - - //Or this way. - auto status = graph->load(model_path1); - //Check whether load operation success. - if(!status){ - std::cout << "error" << endl; - //do something... - } +//some declarations +... +auto graph = new Graph(); +std::string model_path = "the/path/to/where/your/models/are"; +const char *model_path1 = "the/path/to/where/your/models/are"; + +//Loading Anakin model to generate a compute graph. +auto status = graph->load(model_path); + +//Or this way. +auto status = graph->load(model_path1); +//Check whether load operation success. +if(!status){ + std::cout << "error" << endl; + //do something... +} ``` #### 优化计算图 ```c++ - //some declarations - ... - //Load graph. - ... - //According to the ops of loaded graph, optimize compute graph. - graph->Optimize(); +//some declarations +... +//Load graph. +... +//According to the ops of loaded graph, optimize compute graph. +graph->Optimize(); ``` @@ -411,33 +400,34 @@ Anakin中数据类型与基本数据类型的对应如下: 你可以在任何时候保存模型, 特别的, 你可以保存一个优化的模型,这样,下次再加载模型时,就不必进行优化操作。 + ```c++ - //some declarations - ... - //Load graph. - ... - // save a model - //save_model_path: the path to where your model is. - auto status = graph->save(save_model_path); - - //Checking - if(!status){ - cout << "error" << endl; - //do somethin... - } +//some declarations +... +//Load graph. +... +// save a model +//save_model_path: the path to where your model is. +auto status = graph->save(save_model_path); + +//Checking +if(!status){ + cout << "error" << endl; + //do somethin... +} ``` #### 重新设置计算图里的tensor的shape ```c++ - //some declarations - ... - //Load graph. - ... - vector shape{10, 256, 256, 10}; - //input_name : std::string. - //Reshape a tensor named input_name. - graph->Reshape(input_name, shape);//Note: shape is a vector, not a Shape object. +//some declarations +... +//Load graph. +... +vector shape{10, 256, 256, 10}; +//input_name : std::string. +//Reshape a tensor named input_name. +graph->Reshape(input_name, shape);//Note: shape is a vector, not a Shape object. ``` #### 设置 batch size @@ -445,14 +435,14 @@ Anakin中数据类型与基本数据类型的对应如下: `Graph` 支持重新设置batch size的大小。 ```c++ - //some declarations - ... - //Load graph. - ... - //input_name : std::string. - //Reset a tensor named input_name. - int new_batch_size = 4; - graph->ResetBatchSize(input_name, new_batch_size); +//some declarations +... +//Load graph. +... +//input_name : std::string. +//Reset a tensor named input_name. +int new_batch_size = 4; +graph->ResetBatchSize(input_name, new_batch_size); ``` ### Net ### @@ -461,122 +451,126 @@ Anakin中数据类型与基本数据类型的对应如下: `Net` 是计算图的执行器。你可以通过Net对象获得输入和输出 #### Creating a graph executor -`Net`接受四个模板参数。 +`Net`接受四个模板参数。 ```c++ - template - class Net{ - //some implements - ... +template +class Net{ + //some implements + ... - }; +}; ``` 由于有些Op可能支持多种精度,我们可以通过Precision来指定。OpRunType表示同步或异步类型,异步是默认类型。OpRunType::SYNC表示同步,在GPU上只有单个流;OpRunType::ASYNC表示异步,在GPU上有多个流并以异步方式执行。实际上,Precision和OpRunType都是enum class, 详细设计请参考*source_root/framework/core/types.h*. 1. Precision - Precision | Op support - :---: | :---: - Precision::INT4 | NO - Precision::INT8 | NO - Precision::FP16 | NO - Precision::FP32 | YES - Precision::FP64 | NO +Precision | Op support +:---: | :---: +Precision::INT4 | NO +Precision::INT8 | NO +Precision::FP16 | NO +Precision::FP32 | YES +Precision::FP64 | NO 现在Op的精度只支持FP32, 但在将来我们会支持剩下的Precision. -2. OpRunType - OpRunType | Sync/Aync |Description - :---: | :---: | :---: - OpRunType::SYNC | Synchronization | single-stream on GPU - OpRunType::ASYNC | Asynchronization | multi-stream on GPU -用graph对象创建一个执行器 +2. OpRunType +OpRunType | Sync/Aync |Description +:---: | :---: | :---: +OpRunType::SYNC | Synchronization | single-stream on GPU +OpRunType::ASYNC | Asynchronization | multi-stream on GPU + +用graph对象创建一个执行器。 ```c++ - //some declarations - ... - //Create a pointer to a graph. - auto graph = new Graph(); - //do something... - ... +//some declarations +... +//Create a pointer to a graph. +auto graph = new Graph(); +//do something... +... - //create a executor - Net executor(*graph); +//create a executor +Net executor(*graph); ``` #### 获取输入输出tensor + 获取输入输出tensor,并填充输入tensor的buffer。如果想要获取输入和输出tensor,那么必须指定输入的名字,如"input_0", "input_1", "input_2", ..., 必须传入如上字符串才能够获得输入tensor。另外,如果想知道input_i对应哪个输入,你需要去dash board查看,如何使用dash board请看[Anakin Parser](Converter_ch.md)。请看如下示例代码 ```c++ - //some declaratinos - ... - - //create a executor - //TargetType is NV [NVIDIA GPU] - Net executor(*graph); - - //Get the first input tensor. - //The following tensors(tensor_in0, tensor_in2 ...) are resident at GPU. - //Note: Member function get_in returns an pointer to tensor. - Tensor* tensor_in0 = executor.get_in("input_0"); - - //If you have multiple input tensors - //You just type this code below. - Tensor* tensor_in1 = executor.get_in("input_1"); - ... - auto tensor_inn = executor.get_in("input_n"); +//some declaratinos +... + +//create a executor +//TargetType is NV [NVIDIA GPU] +Net executor(*graph); + +//Get the first input tensor. +//The following tensors(tensor_in0, tensor_in2 ...) are resident at GPU. +//Note: Member function get_in returns an pointer to tensor. +Tensor* tensor_in0 = executor.get_in("input_0"); + +//If you have multiple input tensors +//You just type this code below. +Tensor* tensor_in1 = executor.get_in("input_1"); +... +auto tensor_inn = executor.get_in("input_n"); ``` 当得到输入tensor之后,就可以填充它的数据区了。 ```c++ - //This tensor is resident at GPU. - auto tensor_d_in = executor.get_in("input_0"); - - //If we want to feed above tensor, we must feed the tensor which is resident at host. And then copy the host tensor to the device's one. - - //using Tensor4d = Tensor; - Tensor4d tensor_h_in; //host tensor; - //Tensor tensor_h_in; - - //Allocate memory for host tensor. - tensor_h_in.re_alloc(tensor_d_in->valid_shape()); - //Get a writable pointer to tensor. - float *h_data = tensor_h_in.mutable_data(); - - //Feed your tensor. - /** example - for(int i = 0; i < tensor_h_in.size(); i++){ - h_data[i] = 1.0f; - } - */ - //Copy host tensor's data to device tensor. - tensor_d_in->copy_from(tensor_h_in); - - // And then +//This tensor is resident at GPU. +auto tensor_d_in = executor.get_in("input_0"); + +//If we want to feed above tensor, we must feed the tensor which is resident at host. And then copy the host tensor to the device's one. + +//using Tensor4d = Tensor; +Tensor4d tensor_h_in; //host tensor; +//Tensor tensor_h_in; + +//Allocate memory for host tensor. +tensor_h_in.re_alloc(tensor_d_in->valid_shape()); +//Get a writable pointer to tensor. +float *h_data = tensor_h_in.mutable_data(); + +//Feed your tensor. +/** example +for(int i = 0; i < tensor_h_in.size(); i++){ + h_data[i] = 1.0f; +} +*/ +//Copy host tensor's data to device tensor. +tensor_d_in->copy_from(tensor_h_in); + +// And then ``` -类似的,我们可以利用成员函数get_out来获得输出tensor。但与获得输入tensor不同的是, 我们需要指定输入tensor结点的名字,这个可以从dash board中看到,请从[Anakin Parser](Converter_ch.md)中查看dash board的使用方法。假如有个输出结点叫pred_out, 那么我们可以通过如下代码获得相应的输出tensor: +类似的,我们可以利用成员函数get_out来获得输出tensor。但与获得输入tensor不同的是, 我们需要指定输入tensor结点的名字,这个可以从dash board中看到,请从[Anakin Parser](Converter_ch.md)中查看dash board的使用方法。假如有个输出结点叫pred_out, 那么我们可以通过如下代码获得相应的输出tensor: ```c++ - //Note: this tensor are resident at GPU. - Tensor* tensor_out_d = executor.get_out("pred_out"); +//Note: this tensor are resident at GPU. +Tensor* tensor_out_d = executor.get_out("pred_out"); ``` + #### Executing graph + 当一切准备就绪后,我们就可以执行真正的计算了! ```c++ - executor.prediction(); +executor.prediction(); ``` - + ## 示例代码 ## 下面的例子展示了如何调用Anakin。 @@ -585,61 +579,61 @@ Anakin中数据类型与基本数据类型的对应如下: ### Single-thread -单线程例子在 *`source_root/test/framework/net/net_exec_test.cpp`* +单线程例子在 *source_root/test/framework/net/net_exec_test.cpp`* ```c++ - std::string model_path = "your_Anakin_models/xxxxx.anakin.bin"; - // Create an empty graph object. - auto graph = new Graph(); - // Load Anakin model. - auto status = graph->load(model_path); - if(!status ) { - LOG(FATAL) << " [ERROR] " << status.info(); - } - // Reshape - graph->Reshape("input_0", {10, 384, 960, 10}); - // You must optimize graph for the first time. - graph->Optimize(); - // Create a executer. - Net net_executer(*graph); - - //Get your input tensors through some specific string such as "input_0", "input_1", and - //so on. - //And then, feed the input tensor. - //If you don't know Which input do these specific string ("input_0", "input_1") correspond with, you can launch dash board to find out. - auto d_tensor_in_p = net_executer.get_in("input_0"); - Tensor4d h_tensor_in; - auto valid_shape_in = d_tensor_in_p->valid_shape(); - for (int i=0; icopy_from(h_tensor_in); - - //Do inference. - net_executer.prediction(); - - //Get result tensor through the name of output node. - //And also, you need to see the dash board again to find out how many output nodes are and remember their name. - - //For example, you've got a output node named obj_pre_out - //Then, you can get an output tensor. - auto d_tensor_out_0_p = net_executer.get_out("obj_pred_out"); //get_out returns a pointer to output tensor. - auto d_tensor_out_1_p = net_executer.get_out("lc_pred_out"); //get_out returns a pointer to output tensor. - //...... - // do something else ... - //... - //save model. - //You might not optimize the graph when you load the saved model again. - std::string save_model_path = model_path + std::string(".saved"); - auto status = graph->save(save_model_path); - if (!status ) { - LOG(FATAL) << " [ERROR] " << status.info(); - } +std::string model_path = "your_Anakin_models/xxxxx.anakin.bin"; +// Create an empty graph object. +auto graph = new Graph(); +// Load Anakin model. +auto status = graph->load(model_path); +if(!status ) { + LOG(FATAL) << " [ERROR] " << status.info(); +} +// Reshape +graph->Reshape("input_0", {10, 384, 960, 10}); +// You must optimize graph for the first time. +graph->Optimize(); +// Create a executer. +Net net_executer(*graph); + +//Get your input tensors through some specific string such as "input_0", "input_1", and +//so on. +//And then, feed the input tensor. +//If you don't know Which input do these specific string ("input_0", "input_1") correspond with, you can launch dash board to find out. +auto d_tensor_in_p = net_executer.get_in("input_0"); +Tensor4d h_tensor_in; +auto valid_shape_in = d_tensor_in_p->valid_shape(); +for (int i=0; icopy_from(h_tensor_in); + +//Do inference. +net_executer.prediction(); + +//Get result tensor through the name of output node. +//And also, you need to see the dash board again to find out how many output nodes are and remember their name. + +//For example, you've got a output node named obj_pre_out +//Then, you can get an output tensor. +auto d_tensor_out_0_p = net_executer.get_out("obj_pred_out"); //get_out returns a pointer to output tensor. +auto d_tensor_out_1_p = net_executer.get_out("lc_pred_out"); //get_out returns a pointer to output tensor. +//...... +// do something else ... +//... +//save model. +//You might not optimize the graph when you load the saved model again. +std::string save_model_path = model_path + std::string(".saved"); +auto status = graph->save(save_model_path); +if (!status ) { + LOG(FATAL) << " [ERROR] " << status.info(); +} ``` diff --git a/doc/fluid/advanced_usage/deploy/convert_paddle_to_anakin.md b/doc/fluid/advanced_usage/deploy/convert_paddle_to_anakin.md index 8a35875404ce460705de7559fd5eea1247fb69f5..56ca582b2b47f404ede777712830731ea7f4e9b5 100644 --- a/doc/fluid/advanced_usage/deploy/convert_paddle_to_anakin.md +++ b/doc/fluid/advanced_usage/deploy/convert_paddle_to_anakin.md @@ -1,14 +1,14 @@ # 模型转换指南 -Anakin 支持不同框架的模型预测。但由于格式的差别,Anakin 需要您预先转换模型, 本文档介绍如何转换模型。 +Anakin 支持不同框架的模型预测。但由于格式的差别,Anakin 需要您预先转换模型。本文档介绍如何转换模型。 ## 简介 -Anakin 模型转换器输入支持 Caffe 和 Paddle 两种格式的预测模型,模型包含网络结构(model 或 prototxt)和权重参数(param 或 caffemodel)。 +Anakin 模型转换器输入支持 Caffe 和 Fluid 两种格式的预测模型,模型包含网络结构(model 或 prototxt)和权重参数(param 或 caffemodel)。 -模型转换的输出是一个 bin 文件,它作为 Anakin 框架的 graph 参数导入。 +模型转换的输出是一个 bin 文件,它作为 Anakin 框架的 graph 参数导入。 -您还可以使用模型转换器的 launch board 功能生成网络结构的 HTML 预览。 +您还可以使用模型转换器的 launch board 功能生成网络结构的 HTML 预览。 ## 系统要求 @@ -22,7 +22,7 @@ Anakin 模型转换器输入支持 Caffe 和 Paddle 两种格式的预测模型 ## 用法 ### 1、环境 -转换器所需的依赖标注于*系统要求*一节。 +转换器所需的依赖标注于 *系统要求* 一节。 ### 2、配置 您需要对 *config.yaml* 文件进行修改以告知您的需求。工程中给出了 *config.yaml* 示例,下面作进一步说明。 @@ -30,7 +30,7 @@ Anakin 模型转换器输入支持 Caffe 和 Paddle 两种格式的预测模型 #### config.yaml ```bash OPTIONS: - Framework: CAFFE # 依框架类型填写 CAFFE 或 Paddle + Framework: CAFFE # 依框架类型填写 CAFFE 或 FLUID SavePath: ./output # 转换结束后模型的保存位置 ResultName: googlenet # 输出模型的名字 Config: @@ -53,13 +53,13 @@ TARGET: PrototxtPath: /path/to/your/googlenet.prototxt ModelPath: /path/to/your/googlenet.caffemodel - Paddle: - # 当 Framework 为 Paddle 时需填写 + FLUID: + # 当 Framework 为 FLUID 时需填写 Debug: NULL ProtoPaths: - / - PrototxtPath: /path/to/paddle/inference_model - ModelPath: /path/to/paddle/inference_model + PrototxtPath: /path/to/fluid/inference_model + ModelPath: /path/to/fluid/inference_model # ... ``` @@ -68,6 +68,6 @@ TARGET: ### 4、预览 -最后一步,就是在浏览器中查看转换结果!网址是在 *config.yaml* 中配置的,例如 http://0.0.0.0:8888 。 +最后一步,就是在浏览器中查看令人振奋的转换结果!网址是在 *config.yaml* 中配置的,例如 http://0.0.0.0:8888 。 > 注意:若您使用了默认的 IP 地址 0.0.0.0,请在预览时使用真实的服务器地址 real_ip:port 替代它。 diff --git a/doc/fluid/advanced_usage/deploy/how_to_support_new_device_in_anakin.md b/doc/fluid/advanced_usage/deploy/how_to_support_new_device_in_anakin.md index dc281ff6ac53ccc0a32d4c1ca30f02f5275ee83f..a1f75f5e95cfb90f26d3782ba30a6d1887a70424 100644 --- a/doc/fluid/advanced_usage/deploy/how_to_support_new_device_in_anakin.md +++ b/doc/fluid/advanced_usage/deploy/how_to_support_new_device_in_anakin.md @@ -52,7 +52,7 @@ endif() #cmakedefine USE_TNEW_PLACE ``` -* 其他依赖和编译选项 +* 其他依赖和编译选项 修改`cmake`目录下的`compiler_options.cmake`和`find_modules.cmake` @@ -231,7 +231,7 @@ struct TargetWrapper { //根据TNEW的具体类型修改__xx 4. 在`impl/`目录下添加设备目录和实现 在`saber/core/impl`目录下添加设备目录`tnew`。 -* 实现`TargetWrapper`结构体中各函数的定义。 +* 实现`TargetWrapper`结构体中各函数的定义。 如果`TargetWrapper`的实现与默认的模板类一致,则不用特化出该类。 ```c++ @@ -243,11 +243,11 @@ void TNEW_API::get_device_count(int &count) { void TNEW_API::set_device(int id){ // add implementation } - + void TNEW_API::mem_alloc(void** ptr, size_t n){ // add implementation } - + void TNEW_API::mem_free(void* ptr){ if(ptr != nullptr){ // add implementation @@ -275,7 +275,7 @@ void Device::get_info() { ### 在`saber/funcs`中实现设备相关的op -参考[如何增加新的Operator](./how_to_add_anakin_op.md) +参考[如何增加新的Operator](addCustomOp.md) ## 在`framework`中添加设备的具体化或实例化 ## @@ -329,7 +329,7 @@ public: typedef Tensor4d::type> type; PBlock() { - _inner_tensor = std::make_shared(); + _inner_tensor = std::make_shared(); } ... } @@ -348,7 +348,7 @@ struct target_host { ### `framework/graph` * `graph.cpp`中添加实例化 - + ```c++ #ifdef USE_TNEW_PLACE template class Graph; @@ -360,7 +360,7 @@ struct target_host { ### `framework/model_parser` * `parser.cpp`中添加实例化 - + ```c++ #ifdef USE_TNEW_PLACE template @@ -372,7 +372,7 @@ struct target_host { template Status load(graph::Graph* graph, const char* model_path); - + template Status save(graph::Graph* graph, std::string& model_path); @@ -382,7 +382,7 @@ struct target_host { template Status save(graph::Graph* graph, std::string& model_path); - + template Status load(graph::Graph* graph, std::string& model_path); @@ -392,7 +392,7 @@ struct target_host { template Status load(graph::Graph* graph, std::string& model_path); - + template Status save(graph::Graph* graph, const char* model_path); diff --git a/doc/fluid/advanced_usage/deploy/index_anakin.rst b/doc/fluid/advanced_usage/deploy/index_anakin.rst index 32d26156aed1d340482dbe2cb5a273c0679395cd..b561a577d557b2b7dac9065c44ac7d3500261aad 100644 --- a/doc/fluid/advanced_usage/deploy/index_anakin.rst +++ b/doc/fluid/advanced_usage/deploy/index_anakin.rst @@ -10,13 +10,12 @@ Anakin 预测引擎 install_anakin.md convert_paddle_to_anakin.md + run_anakin_on_arm.md anakin_tutorial.md - anakin_run_on_arm.md anakin_example.md anakin_gpu_benchmark.md anakin_arm_benchmark.md - 开发文档 ~~~~~~~ @@ -25,4 +24,3 @@ Anakin 预测引擎 how_to_add_anakin_op.md how_to_support_new_device_in_anakin.md - anakin_parser_design.md diff --git a/doc/fluid/advanced_usage/deploy/install_anakin.md b/doc/fluid/advanced_usage/deploy/install_anakin.md index 6a4ace107c1117825db497c6f77c179671b2e814..bb7c1950308622e3de292268a718e6ec688e6ae6 100644 --- a/doc/fluid/advanced_usage/deploy/install_anakin.md +++ b/doc/fluid/advanced_usage/deploy/install_anakin.md @@ -1,4 +1,4 @@ -## 源码编译安装Anakin ## +## 从源码编译安装Anakin ## 我们已经在CentOS 7.3上成功的安装和测试了Anakin,对于其他操作系统,我们将很快支持。 @@ -6,7 +6,7 @@ * [在CentOS上安装 Anakin]() * [在Ubuntu上安装 Anakin]() -* [在ARM上安装 Anakin](./anakin_run_on_arm.md) +* [在ARM上安装 Anakin](run_on_arm_ch.md) * [验证安装]() @@ -26,37 +26,30 @@ #### 3. 编译支持NVIDIA GPU的Anakin #### - 3.1. 安装依赖 + - 3.1.1 protobuf + >$ git clone https://github.com/google/protobuf + >$ cd protobuf + >$ git submodule update --init --recursive + >$ ./autogen.sh + >$ ./configure --prefix=/path/to/your/insall_dir + >$ make + >$ make check + >$ make install + >$ sudo ldconfig - - 3.1.1 protobuf - ``` - > git clone https://github.com/google/protobuf - > cd protobuf - > git submodule update --init --recursive - > ./autogen.sh - > ./configure --prefix=/path/to/your/insall_dir - > make - > make check - > make install - > sudo ldconfig - ``` - - 如安装protobuf遇到任何问题,请访问[这里](https://github.com/google/protobuf/blob/master/src/README.md) + 如安装protobuf遇到任何问题,请访问[这里](https://github.com/google/protobuf/blob/master/src/README.md) - 3.2 CUDA Toolkit - - - [CUDA 8.0](https://developer.nvidia.com/cuda-zone) or higher, 具体信息参见[NVIDIA's documentation](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/). - - [cuDNN v7](https://developer.nvidia.com/cudnn), 具体信息参见[NVIDIA's documentation](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/). - + - [CUDA 8.0](https://developer.nvidia.com/cuda-zone) or higher. 具体信息参见[NVIDIA's documentation](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/). + - [cuDNN v7](https://developer.nvidia.com/cudnn). 具体信息参见[NVIDIA's documentation](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/). - 3.3 编译Anakin + >$ git clone https:/xxxxx + >$ cd anakin + >$ mkdir build + >$ camke .. + >$ make - ``` - > git clone https:/xxxxx - > cd anakin - > mkdir build - > camke .. - > make - ``` #### 4. 编译支持AMD GPU的Anakin #### @@ -70,8 +63,7 @@ ### 在ARM上安装 Anakin ### -请参考[ARM安装文档](./anakin_run_on_arm.md) +暂时还不支持 ### 验证安装 ### - -安装完成后,如果没有报错信息,你可以通过运行 `output/unit_test`路径下的单测示例验证是否编译成功。 +we are coming soon... diff --git a/doc/fluid/advanced_usage/deploy/run_anakin_on_arm.md b/doc/fluid/advanced_usage/deploy/run_anakin_on_arm.md index f61beca7ef21198fc992f0dafd9bfc464b4a60f5..ebeb38f534ebfc8cb5a41d103abe3bb1de7e379a 100644 --- a/doc/fluid/advanced_usage/deploy/run_anakin_on_arm.md +++ b/doc/fluid/advanced_usage/deploy/run_anakin_on_arm.md @@ -1,4 +1,4 @@ -## ARM 源码编译 Anakin ## +## 源码编译 Anakin ## 目前Anakin支持ARM Android平台,采用Android NDK交叉编译工具链,已在mac os和centos上编译和测试通过。 @@ -12,44 +12,37 @@ ### 1. 系统需求 ### -* 宿主机: linux, mac -* cmake 3.8.2+ +* 宿主机: linux, mac +* cmake 3.8.2+ * Android NDK r14, Linux 版本[从这里下载](https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip) ### 2. 安装第三方依赖 ### -- 2.1 protobuf3.4.0 - - 源码从这里[下载](https://github.com/google/protobuf/releases/tag/v3.4.0) - - - 2.1.1 为宿主机编译protobuf - -```bash - $ tar -xzf protobuf-3.4.0.tar.gz - $ cd protobuf-3.4.0 - $ ./autogen.sh - $ ./configure - $ make - $ make check +- 2.1 protobuf3.4.0 + 源码从这里[下载](https://github.com/google/protobuf/releases/tag/v3.4.0) + - 2.1.1 为宿主机编译protobuf + ```bash + $ tar -xzf protobuf-3.4.0.tar.gz + $ cd protobuf-3.4.0 + $ ./autogen.sh + $ ./configure + $ make + $ make check $ make install -``` - -上述 $make install 执行后,可在 /usr/local/include/google 找到 libprotobuf 所需的头文件,将整个google文件夹拷贝至Anakin/third-party/arm-android/protobuf/下 - -如有问题,请点[这里](https://github.com/google/protobuf/blob/v3.4.0/src/README.md),然后将已经生成文件清除。 - -```bash + ``` + 上述 $make install 执行后,可在 /usr/local/include/google 找到 libprotobuf 所需的头文件,将整个google文件夹拷贝至Anakin/third-party/arm-android/protobuf/下, + 如有问题,请点[这里](https://github.com/google/protobuf/blob/v3.4.0/src/README.md)。 + 然后将已经生成文件清除。 + ```bash $ make distclean -``` - - - 2.1.1 交叉编译Android`armeabi-v7a`的protobuf,注意设置ANDROID_NDK的路径,以及ARCH_ABI、HOSTOSN的值 - + ``` + - 2.1.1 交叉编译Android`armeabi-v7a`的protobuf,注意设置ANDROID_NDK的路径,以及ARCH_ABI、HOSTOSN的值, ```bash - $ export ANDROID_NDK=your_ndk_path + $ export ANDROID_NDK=your_ndk_path $ ARCH_ABI="arm-linux-androideabi-4.9" $ HOSTOSN="darwin-x86_64" - $ export SYSROOT=$ANDROID_NDK/platforms/android-9/arch-arm + $ export SYSROOT=$ANDROID_NDK/platforms/android-9/arch-arm $ export PREBUILT=$ANDROID_NDK/toolchains/$ARCH_ABI $ export LDFLAGS="--sysroot=$SYSROOT" $ export LD="$ANDROID_NDK/toolchains/$ARCH_ABI/prebuilt/$HOSTOSN/arm-linux-androideabi/bin/ld $LDFLAGS" @@ -60,38 +53,34 @@ $ export CCFLAGS="$CXXFLAGS" $ export CXX="$PREBUILT/prebuilt/$HOSTOSN/bin/arm-linux-androideabi-g++ $CXXFLAGS" $ export CC="$CXX" - $ export RANLIB="$ANDROID_NDK/toolchains/$ARCH_ABI/prebuilt/$HOSTOSN/bin/arm-linux-androideabi-ranlib" - $ ./autogen.sh - $ ./configure --host=arm-linux-androideabi --with-sysroot=$SYSROOT --enable-cross-compile --with-protoc=protoc --disable-shared CXX="$CXX" CC="$CC" LD="$LD" + $ export RANLIB="$ANDROID_NDK/toolchains/$ARCH_ABI/prebuilt/$HOSTOSN/bin/arm-linux-androideabi-ranlib" + $ ./autogen.sh + $ ./configure --host=arm-linux-androideabi --with-sysroot=$SYSROOT --enable-cross-compile --with-protoc=protoc --disable-shared CXX="$CXX" CC="$CC" LD="$LD" $ make -``` - -编译生成 *.a 静态库,若希望编译*.so 动态链接库 ,请在./configure参数中改--disable-shared为--disable-static --enable-shared。 -生成文件在src/.libs/下,将生成的文件拷贝至Anakin/third-party/arm-android/protobuf/lib下。 -在[cmake](../../cmake/find_modules.cmake)中更新`ARM_RPOTO_ROOT`的路径。 - -```cmake - set(ARM_RPOTO_ROOT "${CMAKE_SOURCE_DIR}/third-party/arm-android/protobuf") -``` - -- 2.2 opencv 2.4.3+(optional) - - Anakin只在examples示例中使用opencv - Android系统的opencv从[这里下载](https://opencv.org/releases.html) - 解压后将 `3rdparty/libs/armeabi-v7a`中的库文件拷贝到`libs/armeabi-v7a` - 在[cmake](../../cmake/find_modules.cmake)中搜索`anakin_find_opencv`, - 并设置 `include_directories` 和 `LINK_DIRECTORIES`为自己安装的库的路径。 - + ``` + + 编译生成 *.a 静态库,若希望编译*.so 动态链接库 ,请在./configure参数中改--disable-shared为--disable-static --enable-shared。 + 生成文件在src/.libs/下,将生成的文件拷贝至Anakin/third-party/arm-android/protobuf/lib下。 + 在[cmake](../../cmake/find_modules.cmake)中更新`ARM_RPOTO_ROOT`的路径。 ```cmake + set(ARM_RPOTO_ROOT "${CMAKE_SOURCE_DIR}/third-party/arm-android/protobuf") + ``` + +- 2.2 opencv 2.4.3+(optional) + Anakin只在examples示例中使用opencv + Android系统的opencv从[这里下载](https://opencv.org/releases.html) + 解压后将 `3rdparty/libs/armeabi-v7a`中的库文件拷贝到`libs/armeabi-v7a` + 在[cmake](../../cmake/find_modules.cmake)中搜索`anakin_find_opencv`, + 并设置 `include_directories` 和 `LINK_DIRECTORIES`为自己安装的库的路径。 + ```cmake include_directories(${CMAKE_SOURCE_DIR}/third-party/arm-android/opencv/sdk/native/jni/include/) LINK_DIRECTORIES(${CMAKE_SOURCE_DIR}/third-party/arm-android/opencv/sdk/native/libs/armeabi-v7a/) - ``` + ``` ### 3. Anakin源码编译 ### #### 编译Android版本 - 克隆[源码](https://github.com/PaddlePaddle/Anakin/tree/arm) - + 克隆[源码](https://github.com/PaddlePaddle/Anakin/tree/arm) ```bash cd your_dir git clone https://github.com/PaddlePaddle/Anakin.git @@ -99,87 +88,64 @@ git fetch origin arm git checkout arm ``` - - 修改`android_build.sh` - -- 修改NDK路径 - + 修改`android_build.sh` +- 修改NDK路径 ```bash #modify "your_ndk_path" to your NDK path export ANDROID_NDK=your_ndk_path ``` - -- 修改ARM 处理器架构 - - 对于32位ARM处理器, 将ANDROID_ABI 设置为 `armeabi-v7a with NEON`, - 对于64位ARM处理器, 可以将ANDROID_ABI 设置为 `armeabi-v7a with NEON`或者`arm64-v8a`。 - 目前我们只支持 `armeabi-v7a with NEON`;`arm64-v8a` 还在开发中。 - +- 修改ARM 处理器架构 + 对于32位ARM处理器, 将ANDROID_ABI 设置为 `armeabi-v7a with NEON`, + 对于64位ARM处理器, 可以将ANDROID_ABI 设置为 `armeabi-v7a with NEON`或者`arm64-v8a`。 + 目前我们只支持 `armeabi-v7a with NEON`;`arm64-v8a` 还在开发中。 ```bash -DANDROID_ABI="armeabi-v7a with NEON" ``` - -- 设置Android API - - 根据Android系统的版本设置API level, 例如API Level 21 -> Android 5.0.1 +- 设置Android API + 根据Android系统的版本设置API level, 例如API Level 21 -> Android 5.0.1 ```bash -DANDROID_NATIVE_API_LEVEL=21 ``` -- 选择编译静态库或动态库 - - 设置`BUILD_SHARED=NO`编译静态库 - 设置`BUILD_SHARED=YES`编译动态库 - +- 选择编译静态库或动态库 + 设置`BUILD_SHARED=NO`编译静态库 + 设置`BUILD_SHARED=YES`编译动态库 ```bash -DBUILD_SHARED=NO ``` -- OpenMP多线程支持 - - 设置`USE_OPENMP=YES`开启OpenMP多线程 - +- OpenMP多线程支持 + 设置`USE_OPENMP=YES`开启OpenMP多线程 ```bash -DUSE_OPENMP=YES ``` - -- 编译单测文件 - - 设置`BUILD_WITH_UNIT_TEST=YES`将会编译单测文件 - - ```bash - -DBUILD_WITH_UNIT_TEST=YES - ``` - -- 编译示例文件 - - 设置`BUILD_EXAMPLES=YES`将会编译示例文件 - - ```bash - -DBUILD_EXAMPLES=YES - ``` - -- 开启opencv - - 如果使用opencv,设置`USE_OPENCV=YES` - - ```bash - -DUSE_OPENCV=YES - ``` - -- 开始编译 - - 运行脚本 `android_build.sh` 将自动编译Anakin - + +- 编译单测文件 + 设置`BUILD_WITH_UNIT_TEST=YES`将会编译单测文件 + ```bash + -DBUILD_WITH_UNIT_TEST=YES + ``` + +- 编译示例文件 + 设置`BUILD_EXAMPLES=YES`将会编译示例文件 + ```bash + -DBUILD_EXAMPLES=YES + ``` + +- 开启opencv + 如果使用opencv,设置`USE_OPENCV=YES` + ```bash + -DUSE_OPENCV=YES + ``` + +- 开始编译 + 运行脚本 `android_build.sh` 将自动编译Anakin ```bash ./android_build.sh ``` -### 4. 验证安装 ### - - 编译好的库会放在目录`${Anakin_root}/output`下 - - 编译好的单测文件会放在`${Anakin_root}/output/unit_test`目录下 - - 编译好的示例文件会放在`${Anakin_root}/output/examples`目录下 - - 对于Android系统,打开设备的调试模式,通过ADB可以访问的目录是`data/local/tmp`,通过ADB push将测试文件、模型和数据发送到设备目录,运行测试文件。 +### 4. 验证安装 ### + 编译好的库会放在目录`${Anakin_root}/output`下; + 编译好的单测文件会放在`${Anakin_root}/output/unit_test`目录下; + 编译好的示例文件会放在`${Anakin_root}/output/examples`目录下。 + + 对于Android系统,打开设备的调试模式,通过ADB可以访问的目录是`data/local/tmp`,通过ADB push将测试文件、模型和数据发送到设备目录, 运行测试文件。