提交 24a89167 编写于 作者: J Jiabin Yang 提交者: Cheerego

dygraph doc (#795)

* dygraph doc

* refine doc

* refine doc

* refine doc

* refine language

* refine code
上级 e4ac8fe8
# DyGraph
PaddlePaddle的DyGraph模式是一种动态的图执行机制,可以立即执行结果,无需构建整个图。同时,和以往静态的执行计算图不同,DyGraph模式下您的所有操作可以立即获得执行结果,而不必等待所构建的计算图全部执行完成,这样可以让您更加直观地构建PaddlePaddle下的深度学习任务,以及进行模型的调试,同时还减少了大量用于构建静态计算图的代码,使得您编写、调试网络的过程变得更加便捷。
PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供:
* 更加灵活便捷的代码组织结构: 使用python的执行控制流程和面向对象的模型设计
* 更加便捷的调试功能: 直接调用操作从而检查正在运行的模型并且测试更改
* 和静态执行图通用的模型代码:同样的模型代码可以使用更加便捷的DyGraph调试,执行,同时也支持使用原有的静态图模式执行
* 支持纯Python和Numpy语法实现的layer: 支持使用Numpy相关操作直接搭建模型计算部分
## 设置和基本用法
1. 升级到最新的PaddlePaddle 1.4:
pip install -q --upgrade paddlepaddle==1.4
2. 使用`fluid.dygraph.guard(place=None)` 上下文:
import paddle.fluid as fluid
with fluid.dygraph.guard():
# write your executable dygraph code here
现在您就可以在`fluid.dygraph.guard()`上下文环境中使用DyGraph的模式运行网络了,DyGraph将改变以往PaddlePaddle的执行方式: 现在他们将会立即执行,并且将计算结果返回给Python。
Dygraph将非常适合和Numpy一起使用,使用`fluid.dygraph.base.to_variable(x)`将会将ndarray转换为`fluid.Variable`,而使用`fluid.Variable.numpy()`将可以把任意时刻获取到的计算结果转换为Numpy`ndarray`:
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs = []
for _ in range(10):
inputs.append(fluid.dygraph.base.to_variable(x))
ret = fluid.layers.sums(inputs)
print(ret.numpy())
[[10. 10.]
[10. 10.]]
Process finished with exit code 0
> 这里创建了一系列`ndarray`的输入,执行了一个`sum`操作之后,我们可以直接将运行的结果打印出来
然后通过调用`reduce_sum`后使用`Variable.backward()`方法执行反向,使用`Variable.gradient()`方法即可获得反向网络执行完成后的梯度值的`ndarray`形式:
loss = fluid.layers.reduce_sum(ret)
loss.backward()
print(loss.gradient())
[1.]
Process finished with exit code 0
<!--3. 使用Python和Numpy的操作来构建一个网络:
首先定义了一个继承自`fluid.PyLayer`的`MyPyLayer`:
这个类需要实现:
1. 一个调用基类方法的用于初始化网络参数和结构的`__init__`方法
2. 一个用于在实际运行时实现前向逻辑的静态方法`forward(*inputs)`
3. 一个用于在实际运行时实现反向逻辑的静态方法`backward(*douts)`
class MyPyLayer(fluid.PyLayer):
def __init__(self):
super(MyPyLayer, self).__init__()
@staticmethod
def forward(inputs):
return np.tanh(inputs[0])
@staticmethod
def backward(inputs):
inp, out, dout = inputs
return np.array(dout) * (1 - np.square(np.array(out))
然后在`fluid.dygraph.guard()`中使用类似`2`中的方法调用`my_py_layer`执行这个callable object来执行:
np_inp = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
my_py_layer = MyPyLayer()
var_inp = fluid.dygraph.base.to_variable(np_inp)
outs = my_py_layer(var_inp)
dy_out = np.sum(outs[0].numpy())
outs[0].backward()
dy_grad = var_inp.gradient()
> 请注意,继承自`fluid.PyLayer`的网络和继承自`fluid.Layer`的网络暂时不可混用
-->
## 基于DyGraph构建网络
1. 编写一段用于DyGraph执行的Object-Oriented-Designed, PaddlePaddle模型代码主要由以下**三个部分**组成: **请注意,如果您设计的这一层结构是包含参数的,则必需要使用继承自`fluid.Layer`的Object-Oriented-Designed的类来描述该层的行为。**
1. 建立一个可以在DyGraph模式中执行的,Object-Oriented的网络,需要继承自`fluid.Layer`,其中需要调用基类的`__init__`方法,并且实现带有参数`name_scope`(用来标识本层的名字)的`__init__`构造函数,在构造函数中,我们通常会执行一些例如参数初始化,子网络初始化的操作,执行这些操作时不依赖于输入的动态信息:
class MyLayer(fluid.Layer):
def __init__(self, name_scope):
super(MyLayer, self).__init__(name_scope)
2. 实现一个`forward(self, *inputs)`的执行函数,该函数将负责执行实际运行时网络的执行逻辑, 该函数将会在每一轮训练/预测中被调用,这里我们将执行一个简单的`relu` -> `elementwise add` -> `reduce sum`:
def forward(self, inputs):
x = fluid.layers.relu(inputs)
self._x_for_debug = x
x = fluid.layers.elementwise_mul(x, x)
x = fluid.layers.reduce_sum(x)
return [x]
3. (可选)实现一个`build_once(self, *inputs)` 方法,该方法将作为一个单次执行的函数,用于初始化一些依赖于输入信息的参数和网络信息, 例如在`FC`(fully connected layer)当中, 需要依赖输入的`shape`初始化参数, 这里我们并不需要这样的操作,仅仅为了展示,因此这个方法可以直接跳过:
def build_once(self, input):
pass
2.`fluid.dygraph.guard()`中执行:
1. 使用Numpy构建输入:
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
2. 输入转换并执行前向网络获取返回值: 使用`fluid.dygraph.base.to_variable(np_inp)`转换Numpy输入为DyGraph接收的输入,然后使用`l(var_inp)[0]`调用callable object并且获取了`x`作为返回值,利用`x.numpy()`方法直接获取了执行得到的`x`的`ndarray`返回值。
with fluid.dygraph.guard():
var_inp = fluid.dygraph.base.to_variable(np_inp)
l = MyLayer("my_layer")
x = l(var_inp)[0]
dy_out = x.numpy()
3. 计算梯度:自动微分对于实现机器学习算法(例如用于训练神经网络的反向传播)来说很有用, 使用`x.backward()`方法可以从某个`fluid.Varaible`开始执行反向网络,同时利用`l._x_for_debug.gradient()`获取了网络中`x`梯度的`ndarray` 返回值:
x.backward()
dy_grad = l._x_for_debug.gradient()
## 使用DyGraph训练模型
接下来我们将以“手写数字识别”这个最基础的模型为例,展示如何利用DyGraph模式搭建并训练一个模型:
有关手写数字识别的相关理论知识请参考[PaddleBook](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits)中的内容,我们在这里默认您已经了解了该模型所需的深度学习理论知识。
1. 准备数据,我们使用`paddle.dataset.mnist`作为训练所需要的数据集:
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True)
2. 构建网络,虽然您可以根据之前的介绍自己定义所有的网络结构,但是您也可以直接使用`fluid.Layer.nn`当中我们为您定制好的一些基础网络结构,这里我们利用`fluid.Layer.nn.Conv2d`以及`fluid.Layer.nn.Pool2d`构建了基础的`SimpleImgConvPool`
class SimpleImgConvPool(fluid.dygraph.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=1,
act=None,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__(name_scope)
self._conv2d = Conv2D(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=None,
bias_attr=None,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
self.full_name(),
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
> 注意: 构建网络时子网络的定义和使用请在`__init__`中进行, 而子网络的调用则在`forward`函数中调用
3. 利用已经构建好的`SimpleImgConvPool`组成最终的`MNIST`网络:
class MNIST(fluid.dygraph.Layer):
def __init__(self, name_scope):
super(MNIST, self).__init__(name_scope)
self._simple_img_conv_pool_1 = SimpleImgConvPool(
self.full_name(), 1, 20, 5, 2, 2, act="relu")
self._simple_img_conv_pool_2 = SimpleImgConvPool(
self.full_name(), 20, 50, 5, 2, 2, act="relu")
pool_2_shape = 50 * 4 * 4
SIZE = 10
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
self._fc = FC(self.full_name(),
10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)),
act="softmax")
def forward(self, inputs):
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = self._fc(x)
return x
4.`fluid.dygraph.guard()`中定义配置好的`MNIST`网络结构,此时即使没有训练也可以在`fluid.dygraph.guard()`中调用模型并且检查输出:
with fluid.dygraph.guard():
mnist = MNIST("mnist")
id, data = list(enumerate(train_reader()))[0]
dy_x_data = np.array(
[x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
img = to_variable(dy_x_data)
print("cost is: {}".format(mnist(img).numpy()))
cost is: [[0.10135901 0.1051138 0.1027941 ... 0.0972859 0.10221873 0.10165327]
[0.09735426 0.09970362 0.10198303 ... 0.10134517 0.10179105 0.10025002]
[0.09539858 0.10213123 0.09543551 ... 0.10613529 0.10535969 0.097991 ]
...
[0.10120598 0.0996111 0.10512722 ... 0.10067689 0.10088114 0.10071224]
[0.09889644 0.10033772 0.10151272 ... 0.10245881 0.09878646 0.101483 ]
[0.09097178 0.10078511 0.10198414 ... 0.10317434 0.10087223 0.09816764]]
Process finished with exit code 0
5. 构建训练循环,在每一轮参数更新完成后我们调用`mnist.clear_gradients()`来重置梯度:
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_reader()):
dy_x_data = np.array(
[x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss.numpy()
avg_loss.backward()
sgd.minimize(avg_loss)
mnist.clear_gradients()
6. 变量及优化器
模型的参数或者任何您希望检测的值可以作为变量封装在类中,并且通过对象获取并使用`numpy()`方法获取其`ndarray`的输出, 在训练过程中您可以使用`mnist.parameters()`来获取到网络中所有的参数,也可以指定某一个`Layer`的某个参数或者`parameters()`来获取该层的所有参数,使用`numpy()`方法随时查看参数的值
反向运行后调用之前定义的`SGD`优化器对象的`minimize`方法进行参数更新:
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist = MNIST("mnist")
sgd = SGDOptimizer(learning_rate=1e-3)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size= BATCH_SIZE, drop_last=True)
dy_param_init_value = {}
np.set_printoptions(precision=3, suppress=True)
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_reader()):
dy_x_data = np.array(
[x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss.numpy()
if epoch == 0 and batch_id == 0:
for param in mnist.parameters():
dy_param_init_value[param.name] = param.numpy()
avg_loss.backward()
sgd.minimize(avg_loss)
mnist.clear_gradients()
dy_param_value = {}
for param in mnist.parameters():
dy_param_value[param.name] = param.numpy()
if batch_id % 20 == 0:
print("Loss at step {}: {:.7}".format(batch_id, avg_loss.numpy()))
print("Final loss: {:.7}".format(avg_loss.numpy()))
print("_simple_img_conv_pool_1_conv2d W's mean is: {}".format(mnist._simple_img_conv_pool_1._conv2d._filter_param.numpy().mean()))
print("_simple_img_conv_pool_1_conv2d Bias's mean is: {}".format(mnist._simple_img_conv_pool_1._conv2d._bias_param.numpy().mean()))
Loss at step 0: [2.302]
Loss at step 20: [1.616]
Loss at step 40: [1.244]
Loss at step 60: [1.142]
Loss at step 80: [0.911]
Loss at step 100: [0.824]
Loss at step 120: [0.774]
Loss at step 140: [0.626]
Loss at step 160: [0.609]
Loss at step 180: [0.627]
Loss at step 200: [0.466]
Loss at step 220: [0.499]
Loss at step 240: [0.614]
Loss at step 260: [0.585]
Loss at step 280: [0.503]
Loss at step 300: [0.423]
Loss at step 320: [0.509]
Loss at step 340: [0.348]
Loss at step 360: [0.452]
Loss at step 380: [0.397]
Loss at step 400: [0.54]
Loss at step 420: [0.341]
Loss at step 440: [0.337]
Loss at step 460: [0.155]
Final loss: [0.164]
_simple_img_conv_pool_1_conv2d W's mean is: 0.00606656912714
_simple_img_conv_pool_1_conv2d Bias's mean is: -3.4576318285e-05
7. 性能
在使用`fluid.dygraph.guard()`可以通过传入`fluid.CUDAPlace(0)`或者`fluid.CPUPlace()`来选择执行DyGraph的设备,通常如果不做任何处理将会自动适配您的设备。
## 模型参数的保存

在模型训练中可以使用` fluid.dygraph.save_persistables(your_model_object.state_dict(), "save_dir")`来保存`your_model_object`中所有的模型参数。也可以自定义需要保存的“参数名” - “参数对象”的Python Dictionary传入。
同样可以使用`your_modle_object.load_dict(
fluid.dygraph.load_persistables(your_model_object.state_dict(), "save_dir"))`接口来恢复保存的模型参数从而达到继续训练的目的。
下面的代码展示了如何在“手写数字识别”任务中保存参数并且读取已经保存的参数来继续训练。
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_reader()):
dy_x_data = np.array(
[x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss.numpy()
avg_loss.backward()
sgd.minimize(avg_loss)
fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir")
mnist.clear_gradients()
for param in mnist.parameters():
dy_param_init_value[param.name] = param.numpy()
mnist.load_dict(fluid.dygraph.load_persistables(mnist.state_dict(), "save_dir"))
restore = mnist.parameters()
# check save and load
success = True
for value in restore:
if (not np.allclose(value.numpy(), dy_param_init_value[value.name])) or (not np.isfinite(value.numpy().all())) or (np.isnan(value.numpy().any())):
success = False
print("model save and load success? {}".format(success))
## 模型评估
当我们需要在DyGraph模式下利用搭建的模型进行预测任务,可以使用`YourModel.eval()`接口,在之前的手写数字识别模型中我们使用`mnist.eval()`来启动预测模式(我们默认在`fluid.dygraph.guard()`上下文中是训练模式),在预测的模式下,DyGraph将只会执行前向的预测网络,而不会进行自动求导并执行反向网络:
下面的代码展示了如何使用DyGraph模式训练一个用于执行“手写数字识别”任务的模型并保存,并且利用已经保存好的模型进行预测。
我们在第一个`fluid.dygraph.guard()`上下文中进行了模型的保存和训练,值得注意的是,当我们需要在训练的过程中进行预测时需要使用`YourModel.eval()`切换到预测模式,并且在预测完成后使用`YourModel.train()`切换回训练模式继续训练。
我们在第二个`fluid.dygraph.guard()`上下文中利用之前保存的`checkpoint`进行预测,同样的在执行预测前需要使用`YourModel.eval()`来切换的预测模式。
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist = MNIST("mnist")
adam = AdamOptimizer(learning_rate=0.001)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE, drop_last=True)
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_reader()):
dy_x_data = np.array(
[x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
cost, acc = mnist(img, label)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()
adam.minimize(avg_loss)
# save checkpoint
mnist.clear_gradients()
if batch_id % 100 == 0:
print("Loss at epoch {} step {}: {:}".format(epoch, batch_id, avg_loss.numpy()))
mnist.eval()
test_cost, test_acc = self._test_train(test_reader, mnist, BATCH_SIZE)
mnist.train()
print("Loss at epoch {} , Test avg_loss is: {}, acc is: {}".format(epoch, test_cost, test_acc))
fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir")
print("checkpoint saved")
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist_infer = MNIST("mnist")
# load checkpoint
mnist_infer.load_dict(
fluid.dygraph.load_persistables(mnist.state_dict(), "save_dir"))
print("checkpoint loaded")
# start evaluate mode
mnist_infer.eval()
def load_image(file):
im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
im = im / 255.0 * 2.0 - 1.0
return im
cur_dir = os.path.dirname(os.path.realpath(__file__))
tensor_img = load_image(cur_dir + '/image/infer_3.png')
results = mnist_infer(to_variable(tensor_img))
lab = np.argsort(results.numpy())
print("Inference result of image/infer_3.png is: %d" % lab[0][-1])
Loss at epoch 3 , Test avg_loss is: 0.0721620170576, acc is: 0.97796474359
Loss at epoch 4 step 0: [0.01078923]
Loss at epoch 4 step 100: [0.10447877]
Loss at epoch 4 step 200: [0.05149534]
Loss at epoch 4 step 300: [0.0122997]
Loss at epoch 4 step 400: [0.0281883]
Loss at epoch 4 step 500: [0.10709661]
Loss at epoch 4 step 600: [0.1306036]
Loss at epoch 4 step 700: [0.01628026]
Loss at epoch 4 step 800: [0.07947419]
Loss at epoch 4 step 900: [0.02067161]
Loss at epoch 4 , Test avg_loss is: 0.0802323290939, acc is: 0.976963141026
checkpoint saved
checkpoint loaded
Ran 1 test in 208.017s
Inference result of image/infer_3.png is: 3
## 编写兼容的模型
以上一步中手写数字识别的例子为例,相同的模型代码可以直接在PaddlePaddle的`Executor`中执行:
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
mnist = MNIST("mnist")
sgd = SGDOptimizer(learning_rate=1e-3)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size= BATCH_SIZE, drop_last=True)
img = fluid.layers.data(
name='pixel', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
sgd.minimize(avg_loss)
# initialize params and fetch them
static_param_init_value = {}
static_param_name_list = []
for param in mnist.parameters():
static_param_name_list.append(param.name)
out = exe.run(fluid.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init_value[static_param_name_list[i]] = out[i]
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_reader()):
static_x_data = np.array(
[x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape([BATCH_SIZE, 1])
fetch_list = [avg_loss.name]
fetch_list.extend(static_param_name_list)
out = exe.run(
fluid.default_main_program(),
feed={"pixel": static_x_data,
"label": y_data},
fetch_list=fetch_list)
static_param_value = {}
static_out = out[0]
for i in range(1, len(out)):
static_param_value[static_param_name_list[i - 1]] = out[
i]
......@@ -14,6 +14,9 @@
- `训练神经网络 <../user_guides/howto/training/index_cn.html>`_:介绍如何使用 Fluid 进行单机训练、多机训练、以及保存和载入模型变量
- `DyGraph模式 <../user_guides/howto/dygraph/DyGraph.md>`_:介绍在 Fluid 下使用DyGraph
- `模型评估与调试 <../user_guides/howto/evaluation_and_debugging/index_cn.html>`_:介绍在 Fluid 下进行模型评估和调试的方法,包括:
基于 Fluid 复现的多领域经典模型:
......@@ -28,4 +31,5 @@
howto/configure_simple_model/index_cn.rst
howto/training/index_cn.rst
howto/evaluation_and_debugging/index_cn.rst
howto/dygraph/DyGraph.md
models/index_cn.rst
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册