Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
0331d1e1
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
5
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0331d1e1
编写于
1月 14, 2019
作者:
H
Hao Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
0114-cnapi-bugfix
上级
6b080407
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
4 addition
and
4 deletion
+4
-4
doc/fluid/api_cn/initializer_cn.rst
doc/fluid/api_cn/initializer_cn.rst
+1
-1
doc/fluid/api_cn/optimizer_cn.rst
doc/fluid/api_cn/optimizer_cn.rst
+3
-3
未找到文件。
doc/fluid/api_cn/initializer_cn.rst
浏览文件 @
0331d1e1
...
...
@@ -285,7 +285,7 @@ UniformInitializer
参数:
- **low** (float) - 下界
- **high** (float) - 上界
- **seed** (
floa
t) - 随机种子
- **seed** (
in
t) - 随机种子
**代码示例**
...
...
doc/fluid/api_cn/optimizer_cn.rst
浏览文件 @
0331d1e1
...
...
@@ -470,7 +470,7 @@ RMSPropOptimizer
.. py:class:: paddle.fluid.optimizer.RMSPropOptimizer(learning_rate, rho=0.95, epsilon=1e-06, momentum=0.0, centered=False, regularization=None, name=None)
均方根
平均传播(RMSProp)法是一种未发表的,自适应学习率的方法。原始slides提出了RMSProp:[http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf]中的第29张slide
。等式如下所示:
均方根
传播(RMSProp)法是一种未发表的,自适应学习率的方法。原演示幻灯片中提出了RMSProp:[http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf]中的第29张
。等式如下所示:
.. math::
r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2\\
...
...
@@ -494,11 +494,11 @@ RMSPropOptimizer
其中, :math:`ρ` 是超参数,典型值为0.9,0.95等。 :math:`beta` 是动量术语。 :math:`epsilon` 是一个平滑项,用于避免除零,通常设置在1e-4到1e-8的范围内。
参数:
- **learning_rate** (float) - 全
球
学习率。
- **learning_rate** (float) - 全
局
学习率。
- **rho** (float) - rho是等式中的 :math:`rho` ,默认设置为0.95。
- **epsilon** (float) - 等式中的epsilon是平滑项,避免被零除,默认设置为1e-6。
- **momentum** (float) - 方程中的β是动量项,默认设置为0.0。
- **centered** (bool) - 如果为True,则通过梯度
估计方差对梯度进行归一化;如果false,则由未centered的第二个moment归一化。将此设置为True有助于培训,但在计算和内存方面稍微昂贵一些
。默认为False。
- **centered** (bool) - 如果为True,则通过梯度
的估计方差,对梯度进行归一化;如果False,则由未centered的第二个moment归一化。将此设置为True有助于模型训练,但会消耗额外计算和内存资源
。默认为False。
- **regularization** - 正则器项,如 ``fluid.regularizer.L2DecayRegularizer`` 。
- **name** - 可选的名称前缀。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录