提交 02d1d957 编写于 作者: R RaindragonD 提交者: xsrobin

Release/1.4 (#905)

* modify write_docs (how to contribute documentation) (#899)

* modify write_docs_cn, write_docs_en, include specifications about python 2.7.15 and creating  virtual env with conda

* gitignore update

* revert .gitignore;  update write_docs

* icafe DLTP-1328, stress  exe.close()

* DLTP-1383 不可迭代更正

* DLTP-1404 修复动态图文档中每段代码的格式和大小都不一样

* DLTP-1390 Pyreader中文显示格式问题

* DLTP-1393 无效链接

* DLTP-1421 paddle.fluid.layers.reduce_max中文翻译有问题

* DyGraph 调整标签结构
上级 e4cf6e82
...@@ -24,8 +24,8 @@ PaddlePaddle Fluid可以支持在现代GPU [#]_ 服务器集群上完成高性 ...@@ -24,8 +24,8 @@ PaddlePaddle Fluid可以支持在现代GPU [#]_ 服务器集群上完成高性
:header: "调节项", "可选值说明", "配置方法" :header: "调节项", "可选值说明", "配置方法"
:widths: 3, 3, 5 :widths: 3, 3, 5
"通信模式", "pserver模式;NCCL2模式(collective [#]_ )", "配置方法参考: `这里 <../../user_guides/howto/training/cluster_howto.html#permalink-8--nccl2->`_ " "通信模式", "pserver模式;NCCL2模式(collective [#]_ )", "配置方法参考::ref:`cluster_howto`"
"执行模式", "单进程;单进程ParallelGraph;多进程", "配置方法参考: `这里 <../../user_guides/howto/training/cluster_howto.html#permalink-9--nccl2->`_ " "执行模式", "单进程;单进程ParallelGraph;多进程", "配置方法参考::ref:`cluster_howto`"
"同步AllReduce操作", "开启则使每次调用等待AllReduce同步", "设置环境变量 :code:`FLAGS_sync_nccl_allreduce`" "同步AllReduce操作", "开启则使每次调用等待AllReduce同步", "设置环境变量 :code:`FLAGS_sync_nccl_allreduce`"
"CPU线程数", "int值,配置使用的CPU线程数", "参考本片后续说明" "CPU线程数", "int值,配置使用的CPU线程数", "参考本片后续说明"
"预先分配足够的显存", "0~1之间的float值,预先分配显存的占比", "设置环境变量 :code:`FLAGS_fraction_of_gpu_memory_to_use`" "预先分配足够的显存", "0~1之间的float值,预先分配显存的占比", "设置环境变量 :code:`FLAGS_fraction_of_gpu_memory_to_use`"
...@@ -41,7 +41,7 @@ PaddlePaddle Fluid可以支持在现代GPU [#]_ 服务器集群上完成高性 ...@@ -41,7 +41,7 @@ PaddlePaddle Fluid可以支持在现代GPU [#]_ 服务器集群上完成高性
选择通信模式和执行模式 选择通信模式和执行模式
+++++++++++++++++++ +++++++++++++++++++
GPU分布式训练场景,使用多进程+NCCL2模式(collective)通常可以获得最好的性能。参考 `这里 <../../user_guides/howto/training/cluster_howto.html#permalink-8--nccl2->`_ 配置您的程序使用多进程NCCL2模式训练。 GPU分布式训练场景,使用多进程+NCCL2模式(collective)通常可以获得最好的性能。参考 :ref:`cluster_howto` 配置您的程序使用多进程NCCL2模式训练。
在进程模式下,每台服务器的每个GPU卡都会对应启动一个训练进程, 在进程模式下,每台服务器的每个GPU卡都会对应启动一个训练进程,
集群中的所有进程之间会互相通信完成训练。以此方式最大限度的降低进程内部资源抢占的开销。 集群中的所有进程之间会互相通信完成训练。以此方式最大限度的降低进程内部资源抢占的开销。
......
...@@ -56,8 +56,13 @@ sudo apt-get update && apt-get install -y python-dev build-essential ...@@ -56,8 +56,13 @@ sudo apt-get update && apt-get install -y python-dev build-essential
``` ```
git clone https://github.com/PaddlePaddle/PaddlePaddle.org.git git clone https://github.com/PaddlePaddle/PaddlePaddle.org.git
cd PaddlePaddle.org/portal cd PaddlePaddle.org/portal
# To install in a virtual environment. ```
# virtualenv venv; source venv/bin/activate
之后需要安装依赖库,请确保在python 2.7.15 或2.7.16 环境下安装。推荐使用Anaconda或virtualenv创建合适的虚拟环境后安装依赖库。
安装依赖库:
```
pip install -r requirements.txt pip install -r requirements.txt
``` ```
......
...@@ -51,13 +51,19 @@ Take the ubuntu system as an example, run: ...@@ -51,13 +51,19 @@ Take the ubuntu system as an example, run:
sudo apt-get update && apt-get install -y python-dev build-essential sudo apt-get update && apt-get install -y python-dev build-essential
``` ```
then: Then:
``` ```
git clone https://github.com/PaddlePaddle/PaddlePaddle.org.git git clone https://github.com/PaddlePaddle/PaddlePaddle.org.git
cd PaddlePaddle.org/portal cd PaddlePaddle.org/portal
# To install in a virtual environment. ```
# virtualenv venv; source venv/bin/activate
Then install requirements. Please make sure that you install with python 2.7.15 or 2.7.16. We recommend you to use Anaconda or virtualenv to create an appropriate virtual environment first.
Install requirements:
```
pip install -r requirements.txt pip install -r requirements.txt
``` ```
......
...@@ -196,7 +196,7 @@ PyReader ...@@ -196,7 +196,7 @@ PyReader
**代码示例** **代码示例**
1.如果iterable=false,则创建的Pyreader对象几乎与 ``fluid.layers.py_reader()`` 相同。算子将被插入program中。用户应该在每个epoch之前调用start(),并在epoch结束时捕获 ``Executor.run()`` 抛出的 ``fluid.core.EOFException `` 。一旦捕获到异常,用户应该调用reset()手动重置reader。 1.如果iterable=False,则创建的Pyreader对象几乎与 ``fluid.layers.py_reader()`` 相同。算子将被插入program中。用户应该在每个epoch之前调用start(),并在epoch结束时捕获 ``Executor.run()`` 抛出的 ``fluid.core.EOFException `` 。一旦捕获到异常,用户应该调用reset()手动重置reader。
.. code-block:: python .. code-block:: python
...@@ -220,7 +220,7 @@ PyReader ...@@ -220,7 +220,7 @@ PyReader
break break
2.如果iterable=True,则创建的Pyreader对象与程序分离。程序中不会插入任何算子。在本例中,创建的reader是一个python生成器,它是可迭代的。用户应将从Pyreader对象生成的数据输入 ``Executor.run(feed=...)`` 2.如果iterable=True,则创建的Pyreader对象与程序分离。程序中不会插入任何算子。在本例中,创建的reader是一个python生成器,它是可迭代的。用户应将从Pyreader对象生成的数据输入 ``Executor.run(feed=...)``
.. code-block:: python .. code-block:: python
...@@ -239,15 +239,15 @@ PyReader ...@@ -239,15 +239,15 @@ PyReader
for data in reader(): for data in reader():
executor.run(feed=data, ...) executor.run(feed=data, ...)
.. py:method::start() .. py:function:: start()
启动数据输入线程。只能在reader对象不可迭代时调用。 启动数据输入线程。只能在reader对象不可迭代时调用。
.. py:method::reset() .. py:function:: reset()
当 ``fluid.core.EOFException`` 提升时重置reader对象。只能在reader对象不可迭代时调用。 当 ``fluid.core.EOFException`` 提升时重置reader对象。只能在reader对象不可迭代时调用。
.. py:method::decorate_sample_generator(sample_generator, batch_size, drop_last=True, places=None) .. py:function:: decorate_sample_generator(sample_generator, batch_size, drop_last=True, places=None)
设置Pyreader对象的数据源。 设置Pyreader对象的数据源。
...@@ -264,7 +264,7 @@ PyReader ...@@ -264,7 +264,7 @@ PyReader
- **places** (None|list(CUDAPlace)|list(CPUPlace)) – 位置列表。当PyReader可迭代时必须被提供 - **places** (None|list(CUDAPlace)|list(CPUPlace)) – 位置列表。当PyReader可迭代时必须被提供
.. py:method::decorate_sample_list_generator(reader, places=None) .. py:function:: decorate_sample_list_generator(reader, places=None)
设置Pyreader对象的数据源。 设置Pyreader对象的数据源。
...@@ -277,7 +277,7 @@ PyReader ...@@ -277,7 +277,7 @@ PyReader
- **places** (None|list(CUDAPlace)|list(CPUPlace)) – 位置列表。当PyReader可迭代时必须被提供 - **places** (None|list(CUDAPlace)|list(CPUPlace)) – 位置列表。当PyReader可迭代时必须被提供
.. py:method::decorate_batch_generator(reader, places=None) .. py:function:: decorate_batch_generator(reader, places=None)
设置Pyreader对象的数据源。 设置Pyreader对象的数据源。
......
...@@ -6839,7 +6839,7 @@ reduce_max ...@@ -6839,7 +6839,7 @@ reduce_max
参数: 参数:
- **input** (Variable):输入变量为Tensor或LoDTensor。 - **input** (Variable):输入变量为Tensor或LoDTensor。
- **dim** (list | int | None):函数运算的维度。如果为None,则计算所有元素的平均值并返回单个元素的Tensor变量,否则必须在 :math:`[−rank(input),rank(input)]` 范围内。如果 :math:`dim [i] <0` ,则维度将减小为 :math:`rank+dim[i]` 。 - **dim** (list | int | None):函数运算的维度。如果为None,则计算所有元素中的最大值并返回单个元素的Tensor变量,否则必须在 :math:`[−rank(input),rank(input)]` 范围内。如果 :math:`dim [i] <0` ,则维度将减小为 :math:`rank+dim[i]` 。
- **keep_dim** (bool | False):是否在输出Tensor中保留减小的维度。除非 ``keep_dim`` 为true,否则结果张量将比输入少一个维度。 - **keep_dim** (bool | False):是否在输出Tensor中保留减小的维度。除非 ``keep_dim`` 为true,否则结果张量将比输入少一个维度。
- **name** (str | None):这一层的名称(可选)。如果设置为None,则将自动命名这一层。 - **name** (str | None):这一层的名称(可选)。如果设置为None,则将自动命名这一层。
......
...@@ -21,51 +21,66 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供: ...@@ -21,51 +21,66 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供:
## 设置和基本用法 ## 设置和基本用法
1. 升级到最新的PaddlePaddle 1.4: 1. 升级到最新的PaddlePaddle 1.4:
pip install -q --upgrade paddlepaddle==1.4 ```
pip install -q --upgrade paddlepaddle==1.4
```
2. 使用`fluid.dygraph.guard(place=None)` 上下文: 2. 使用`fluid.dygraph.guard(place=None)` 上下文:
import paddle.fluid as fluid ```python
with fluid.dygraph.guard(): import paddle.fluid as fluid
# write your executable dygraph code here with fluid.dygraph.guard():
# write your executable dygraph code here
现在您就可以在`fluid.dygraph.guard()`上下文环境中使用DyGraph的模式运行网络了,DyGraph将改变以往PaddlePaddle的执行方式: 现在他们将会立即执行,并且将计算结果返回给Python。 ```
现在您就可以在`fluid.dygraph.guard()`上下文环境中使用DyGraph的模式运行网络了,DyGraph将改变以往PaddlePaddle的执行方式: 现在他们将会立即执行,并且将计算结果返回给Python。
Dygraph将非常适合和Numpy一起使用,使用`fluid.dygraph.base.to_variable(x)`将会将ndarray转换为`fluid.Variable`,而使用`fluid.Variable.numpy()`将可以把任意时刻获取到的计算结果转换为Numpy`ndarray`
```python
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs = []
for _ in range(10):
inputs.append(fluid.dygraph.base.to_variable(x))
ret = fluid.layers.sums(inputs)
print(ret.numpy())
```
得到输出 :
```
[[10. 10.]
[10. 10.]]
Process finished with exit code 0
```
> 这里创建了一系列`ndarray`的输入,执行了一个`sum`操作之后,我们可以直接将运行的结果打印出来
然后通过调用`reduce_sum`后使用`Variable.backward()`方法执行反向,使用`Variable.gradient()`方法即可获得反向网络执行完成后的梯度值的`ndarray`形式:
Dygraph将非常适合和Numpy一起使用,使用`fluid.dygraph.base.to_variable(x)`将会将ndarray转换为`fluid.Variable`,而使用`fluid.Variable.numpy()`将可以把任意时刻获取到的计算结果转换为Numpy`ndarray`:
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs = []
for _ in range(10):
inputs.append(fluid.dygraph.base.to_variable(x))
ret = fluid.layers.sums(inputs)
print(ret.numpy())
[[10. 10.]
[10. 10.]]
Process finished with exit code 0
> 这里创建了一系列`ndarray`的输入,执行了一个`sum`操作之后,我们可以直接将运行的结果打印出来
然后通过调用`reduce_sum`后使用`Variable.backward()`方法执行反向,使用`Variable.gradient()`方法即可获得反向网络执行完成后的梯度值的`ndarray`形式:
loss = fluid.layers.reduce_sum(ret)
loss.backward()
print(loss.gradient())
[1.]
Process finished with exit code 0 ```python
loss = fluid.layers.reduce_sum(ret)
loss.backward()
print(loss.gradient())
```
得到输出 :
```
[1.]
Process finished with exit code 0
```
<!--3. 使用Python和Numpy的操作来构建一个网络: <!--3. 使用Python和Numpy的操作来构建一个网络:
...@@ -108,47 +123,64 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供: ...@@ -108,47 +123,64 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供:
1. 编写一段用于DyGraph执行的Object-Oriented-Designed, PaddlePaddle模型代码主要由以下**三个部分**组成: **请注意,如果您设计的这一层结构是包含参数的,则必需要使用继承自`fluid.Layer`的Object-Oriented-Designed的类来描述该层的行为。** 1. 编写一段用于DyGraph执行的Object-Oriented-Designed, PaddlePaddle模型代码主要由以下**三个部分**组成: **请注意,如果您设计的这一层结构是包含参数的,则必需要使用继承自`fluid.Layer`的Object-Oriented-Designed的类来描述该层的行为。**
1. 建立一个可以在DyGraph模式中执行的,Object-Oriented的网络,需要继承自`fluid.Layer`,其中需要调用基类的`__init__`方法,并且实现带有参数`name_scope`(用来标识本层的名字)的`__init__`构造函数,在构造函数中,我们通常会执行一些例如参数初始化,子网络初始化的操作,执行这些操作时不依赖于输入的动态信息: 1. 建立一个可以在DyGraph模式中执行的,Object-Oriented的网络,需要继承自`fluid.Layer`,其中需要调用基类的`__init__`方法,并且实现带有参数`name_scope`(用来标识本层的名字)的`__init__`构造函数,在构造函数中,我们通常会执行一些例如参数初始化,子网络初始化的操作,执行这些操作时不依赖于输入的动态信息:
class MyLayer(fluid.Layer):
def __init__(self, name_scope): ```python
super(MyLayer, self).__init__(name_scope) class MyLayer(fluid.Layer):
def __init__(self, name_scope):
2. 实现一个`forward(self, *inputs)`的执行函数,该函数将负责执行实际运行时网络的执行逻辑, 该函数将会在每一轮训练/预测中被调用,这里我们将执行一个简单的`relu` -> `elementwise add` -> `reduce sum`: super(MyLayer, self).__init__(name_scope)
```
2. 实现一个`forward(self, *inputs)`的执行函数,该函数将负责执行实际运行时网络的执行逻辑, 该函数将会在每一轮训练/预测中被调用,这里我们将执行一个简单的`relu` -> `elementwise add` -> `reduce sum`:
def forward(self, inputs):
x = fluid.layers.relu(inputs) ```python
self._x_for_debug = x def forward(self, inputs):
x = fluid.layers.elementwise_mul(x, x) x = fluid.layers.relu(inputs)
x = fluid.layers.reduce_sum(x) self._x_for_debug = x
return [x] x = fluid.layers.elementwise_mul(x, x)
x = fluid.layers.reduce_sum(x)
3. (可选)实现一个`build_once(self, *inputs)` 方法,该方法将作为一个单次执行的函数,用于初始化一些依赖于输入信息的参数和网络信息, 例如在`FC`(fully connected layer)当中, 需要依赖输入的`shape`初始化参数, 这里我们并不需要这样的操作,仅仅为了展示,因此这个方法可以直接跳过: return [x]
```
3. (可选)实现一个`build_once(self, *inputs)` 方法,该方法将作为一个单次执行的函数,用于初始化一些依赖于输入信息的参数和网络信息, 例如在`FC`(fully connected layer)当中, 需要依赖输入的`shape`初始化参数, 这里我们并不需要这样的操作,仅仅为了展示,因此这个方法可以直接跳过:
def build_once(self, input):
pass ```python
def build_once(self, input):
pass
```
2.`fluid.dygraph.guard()`中执行: 2.`fluid.dygraph.guard()`中执行:
1. 使用Numpy构建输入:
1. 使用Numpy构建输入:
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
2. 输入转换并执行前向网络获取返回值: 使用`fluid.dygraph.base.to_variable(np_inp)`转换Numpy输入为DyGraph接收的输入,然后使用`l(var_inp)[0]`调用callable object并且获取了`x`作为返回值,利用`x.numpy()`方法直接获取了执行得到的`x`的`ndarray`返回值。 ```python
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
```
2. 输入转换并执行前向网络获取返回值: 使用`fluid.dygraph.base.to_variable(np_inp)`转换Numpy输入为DyGraph接收的输入,然后使用`l(var_inp)[0]`调用callable object并且获取了`x`作为返回值,利用`x.numpy()`方法直接获取了执行得到的`x`的`ndarray`返回值。
with fluid.dygraph.guard(): ```python
var_inp = fluid.dygraph.base.to_variable(np_inp) with fluid.dygraph.guard():
l = MyLayer("my_layer") var_inp = fluid.dygraph.base.to_variable(np_inp)
x = l(var_inp)[0] l = MyLayer("my_layer")
dy_out = x.numpy() x = l(var_inp)[0]
dy_out = x.numpy()
```
3. 计算梯度:自动微分对于实现机器学习算法(例如用于训练神经网络的反向传播)来说很有用, 使用`x.backward()`方法可以从某个`fluid.Varaible`开始执行反向网络,同时利用`l._x_for_debug.gradient()`获取了网络中`x`梯度的`ndarray` 返回值: 3. 计算梯度:自动微分对于实现机器学习算法(例如用于训练神经网络的反向传播)来说很有用, 使用`x.backward()`方法可以从某个`fluid.Varaible`开始执行反向网络,同时利用`l._x_for_debug.gradient()`获取了网络中`x`梯度的`ndarray` 返回值:
x.backward()
dy_grad = l._x_for_debug.gradient()
```python
x.backward()
dy_grad = l._x_for_debug.gradient()
```
## 使用DyGraph训练模型 ## 使用DyGraph训练模型
...@@ -159,144 +191,153 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供: ...@@ -159,144 +191,153 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供:
1. 准备数据,我们使用`paddle.dataset.mnist`作为训练所需要的数据集: 1. 准备数据,我们使用`paddle.dataset.mnist`作为训练所需要的数据集:
train_reader = paddle.batch( ```python
paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True) train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True)
```
2. 构建网络,虽然您可以根据之前的介绍自己定义所有的网络结构,但是您也可以直接使用`fluid.Layer.nn`当中我们为您定制好的一些基础网络结构,这里我们利用`fluid.Layer.nn.Conv2d`以及`fluid.Layer.nn.Pool2d`构建了基础的`SimpleImgConvPool` 2. 构建网络,虽然您可以根据之前的介绍自己定义所有的网络结构,但是您也可以直接使用`fluid.Layer.nn`当中我们为您定制好的一些基础网络结构,这里我们利用`fluid.Layer.nn.Conv2d`以及`fluid.Layer.nn.Pool2d`构建了基础的`SimpleImgConvPool`
class SimpleImgConvPool(fluid.dygraph.Layer): ```python
def __init__(self, class SimpleImgConvPool(fluid.dygraph.Layer):
name_scope, def __init__(self,
num_channels, name_scope,
num_filters, num_channels,
filter_size, num_filters,
pool_size, filter_size,
pool_stride, pool_size,
pool_padding=0, pool_stride,
pool_type='max', pool_padding=0,
global_pooling=False, pool_type='max',
conv_stride=1, global_pooling=False,
conv_padding=0, conv_stride=1,
conv_dilation=1, conv_padding=0,
conv_groups=1, conv_dilation=1,
act=None, conv_groups=1,
use_cudnn=False, act=None,
param_attr=None, use_cudnn=False,
bias_attr=None): param_attr=None,
super(SimpleImgConvPool, self).__init__(name_scope) bias_attr=None):
super(SimpleImgConvPool, self).__init__(name_scope)
self._conv2d = Conv2D(
self.full_name(), self._conv2d = Conv2D(
num_channels=num_channels, self.full_name(),
num_filters=num_filters, num_channels=num_channels,
filter_size=filter_size, num_filters=num_filters,
stride=conv_stride, filter_size=filter_size,
padding=conv_padding, stride=conv_stride,
dilation=conv_dilation, padding=conv_padding,
groups=conv_groups, dilation=conv_dilation,
param_attr=None, groups=conv_groups,
bias_attr=None, param_attr=None,
use_cudnn=use_cudnn) bias_attr=None,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
self.full_name(), self._pool2d = Pool2D(
pool_size=pool_size, self.full_name(),
pool_type=pool_type, pool_size=pool_size,
pool_stride=pool_stride, pool_type=pool_type,
pool_padding=pool_padding, pool_stride=pool_stride,
global_pooling=global_pooling, pool_padding=pool_padding,
use_cudnn=use_cudnn) global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs) def forward(self, inputs):
x = self._pool2d(x) x = self._conv2d(inputs)
return x x = self._pool2d(x)
return x
```
> 注意: 构建网络时子网络的定义和使用请在`__init__`中进行, 而子网络的调用则在`forward`函数中调用
> 注意: 构建网络时子网络的定义和使用请在`__init__`中进行, 而子网络的调用则在`forward`函数中调用
3. 利用已经构建好的`SimpleImgConvPool`组成最终的`MNIST`网络: 3. 利用已经构建好的`SimpleImgConvPool`组成最终的`MNIST`网络:
class MNIST(fluid.dygraph.Layer): ```python
def __init__(self, name_scope): class MNIST(fluid.dygraph.Layer):
super(MNIST, self).__init__(name_scope) def __init__(self, name_scope):
super(MNIST, self).__init__(name_scope)
self._simple_img_conv_pool_1 = SimpleImgConvPool(
self.full_name(), 1, 20, 5, 2, 2, act="relu") self._simple_img_conv_pool_1 = SimpleImgConvPool(
self.full_name(), 1, 20, 5, 2, 2, act="relu")
self._simple_img_conv_pool_2 = SimpleImgConvPool(
self.full_name(), 20, 50, 5, 2, 2, act="relu") self._simple_img_conv_pool_2 = SimpleImgConvPool(
self.full_name(), 20, 50, 5, 2, 2, act="relu")
pool_2_shape = 50 * 4 * 4
SIZE = 10 pool_2_shape = 50 * 4 * 4
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5 SIZE = 10
self._fc = FC(self.full_name(), scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
10, self._fc = FC(self.full_name(),
param_attr=fluid.param_attr.ParamAttr( 10,
initializer=fluid.initializer.NormalInitializer( param_attr=fluid.param_attr.ParamAttr(
loc=0.0, scale=scale)), initializer=fluid.initializer.NormalInitializer(
act="softmax") loc=0.0, scale=scale)),
act="softmax")
def forward(self, inputs):
x = self._simple_img_conv_pool_1(inputs) def forward(self, inputs):
x = self._simple_img_conv_pool_2(x) x = self._simple_img_conv_pool_1(inputs)
x = self._fc(x) x = self._simple_img_conv_pool_2(x)
return x x = self._fc(x)
return x
```
4.`fluid.dygraph.guard()`中定义配置好的`MNIST`网络结构,此时即使没有训练也可以在`fluid.dygraph.guard()`中调用模型并且检查输出: 4.`fluid.dygraph.guard()`中定义配置好的`MNIST`网络结构,此时即使没有训练也可以在`fluid.dygraph.guard()`中调用模型并且检查输出:
with fluid.dygraph.guard(): ```python
mnist = MNIST("mnist") with fluid.dygraph.guard():
id, data = list(enumerate(train_reader()))[0] mnist = MNIST("mnist")
dy_x_data = np.array( id, data = list(enumerate(train_reader()))[0]
[x[0].reshape(1, 28, 28) dy_x_data = np.array(
for x in data]).astype('float32') [x[0].reshape(1, 28, 28)
img = to_variable(dy_x_data) for x in data]).astype('float32')
print("cost is: {}".format(mnist(img).numpy())) img = to_variable(dy_x_data)
print("cost is: {}".format(mnist(img).numpy()))
```
cost is: [[0.10135901 0.1051138 0.1027941 ... 0.0972859 0.10221873 0.10165327] 得到输出:
[0.09735426 0.09970362 0.10198303 ... 0.10134517 0.10179105 0.10025002]
[0.09539858 0.10213123 0.09543551 ... 0.10613529 0.10535969 0.097991 ] ```
... cost is: [[0.10135901 0.1051138 0.1027941 ... 0.0972859 0.10221873 0.10165327]
[0.10120598 0.0996111 0.10512722 ... 0.10067689 0.10088114 0.10071224] [0.09735426 0.09970362 0.10198303 ... 0.10134517 0.10179105 0.10025002]
[0.09889644 0.10033772 0.10151272 ... 0.10245881 0.09878646 0.101483 ] [0.09539858 0.10213123 0.09543551 ... 0.10613529 0.10535969 0.097991 ]
[0.09097178 0.10078511 0.10198414 ... 0.10317434 0.10087223 0.09816764]] ...
[0.10120598 0.0996111 0.10512722 ... 0.10067689 0.10088114 0.10071224]
Process finished with exit code 0 [0.09889644 0.10033772 0.10151272 ... 0.10245881 0.09878646 0.101483 ]
[0.09097178 0.10078511 0.10198414 ... 0.10317434 0.10087223 0.09816764]]
Process finished with exit code 0
```
5. 构建训练循环,在每一轮参数更新完成后我们调用`mnist.clear_gradients()`来重置梯度: 5. 构建训练循环,在每一轮参数更新完成后我们调用`mnist.clear_gradients()`来重置梯度:
for epoch in range(epoch_num): ```python
for batch_id, data in enumerate(train_reader()): for epoch in range(epoch_num):
dy_x_data = np.array( for batch_id, data in enumerate(train_reader()):
[x[0].reshape(1, 28, 28) dy_x_data = np.array(
for x in data]).astype('float32') [x[0].reshape(1, 28, 28)
y_data = np.array( for x in data]).astype('float32')
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1) y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
cost = mnist(img) img = to_variable(dy_x_data)
loss = fluid.layers.cross_entropy(cost, label) label = to_variable(y_data)
avg_loss = fluid.layers.mean(loss) label.stop_gradient = True
dy_out = avg_loss.numpy() cost = mnist(img)
avg_loss.backward() loss = fluid.layers.cross_entropy(cost, label)
sgd.minimize(avg_loss) avg_loss = fluid.layers.mean(loss)
mnist.clear_gradients()
dy_out = avg_loss.numpy()
avg_loss.backward()
sgd.minimize(avg_loss)
mnist.clear_gradients()
```
...@@ -305,130 +346,137 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供: ...@@ -305,130 +346,137 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供:
模型的参数或者任何您希望检测的值可以作为变量封装在类中,并且通过对象获取并使用`numpy()`方法获取其`ndarray`的输出, 在训练过程中您可以使用`mnist.parameters()`来获取到网络中所有的参数,也可以指定某一个`Layer`的某个参数或者`parameters()`来获取该层的所有参数,使用`numpy()`方法随时查看参数的值 模型的参数或者任何您希望检测的值可以作为变量封装在类中,并且通过对象获取并使用`numpy()`方法获取其`ndarray`的输出, 在训练过程中您可以使用`mnist.parameters()`来获取到网络中所有的参数,也可以指定某一个`Layer`的某个参数或者`parameters()`来获取该层的所有参数,使用`numpy()`方法随时查看参数的值
反向运行后调用之前定义的`SGD`优化器对象的`minimize`方法进行参数更新: 反向运行后调用之前定义的`SGD`优化器对象的`minimize`方法进行参数更新:
with fluid.dygraph.guard(): ```python
fluid.default_startup_program().random_seed = seed with fluid.dygraph.guard():
fluid.default_main_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist = MNIST("mnist")
sgd = SGDOptimizer(learning_rate=1e-3) mnist = MNIST("mnist")
train_reader = paddle.batch( sgd = SGDOptimizer(learning_rate=1e-3)
paddle.dataset.mnist.train(), batch_size= BATCH_SIZE, drop_last=True) train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size= BATCH_SIZE, drop_last=True)
np.set_printoptions(precision=3, suppress=True)
for epoch in range(epoch_num): np.set_printoptions(precision=3, suppress=True)
for batch_id, data in enumerate(train_reader()): for epoch in range(epoch_num):
dy_x_data = np.array( for batch_id, data in enumerate(train_reader()):
[x[0].reshape(1, 28, 28) dy_x_data = np.array(
for x in data]).astype('float32') [x[0].reshape(1, 28, 28)
y_data = np.array( for x in data]).astype('float32')
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1) y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data) img = to_variable(dy_x_data)
label.stop_gradient = True label = to_variable(y_data)
label.stop_gradient = True
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label) cost = mnist(img)
avg_loss = fluid.layers.mean(loss) loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss.numpy()
dy_out = avg_loss.numpy()
avg_loss.backward()
sgd.minimize(avg_loss) avg_loss.backward()
mnist.clear_gradients() sgd.minimize(avg_loss)
mnist.clear_gradients()
dy_param_value = {}
for param in mnist.parameters(): dy_param_value = {}
dy_param_value[param.name] = param.numpy() for param in mnist.parameters():
dy_param_value[param.name] = param.numpy()
if batch_id % 20 == 0:
print("Loss at step {}: {:.7}".format(batch_id, avg_loss.numpy())) if batch_id % 20 == 0:
print("Final loss: {:.7}".format(avg_loss.numpy())) print("Loss at step {}: {:.7}".format(batch_id, avg_loss.numpy()))
print("_simple_img_conv_pool_1_conv2d W's mean is: {}".format(mnist._simple_img_conv_pool_1._conv2d._filter_param.numpy().mean())) print("Final loss: {:.7}".format(avg_loss.numpy()))
print("_simple_img_conv_pool_1_conv2d Bias's mean is: {}".format(mnist._simple_img_conv_pool_1._conv2d._bias_param.numpy().mean())) print("_simple_img_conv_pool_1_conv2d W's mean is: {}".format(mnist._simple_img_conv_pool_1._conv2d._filter_param.numpy().mean()))
print("_simple_img_conv_pool_1_conv2d Bias's mean is: {}".format(mnist._simple_img_conv_pool_1._conv2d._bias_param.numpy().mean()))
```
Loss at step 0: [2.302]
Loss at step 20: [1.616] 得到输出:
Loss at step 40: [1.244]
Loss at step 60: [1.142] ```
Loss at step 80: [0.911] Loss at step 0: [2.302]
Loss at step 100: [0.824] Loss at step 20: [1.616]
Loss at step 120: [0.774] Loss at step 40: [1.244]
Loss at step 140: [0.626] Loss at step 60: [1.142]
Loss at step 160: [0.609] Loss at step 80: [0.911]
Loss at step 180: [0.627] Loss at step 100: [0.824]
Loss at step 200: [0.466] Loss at step 120: [0.774]
Loss at step 220: [0.499] Loss at step 140: [0.626]
Loss at step 240: [0.614] Loss at step 160: [0.609]
Loss at step 260: [0.585] Loss at step 180: [0.627]
Loss at step 280: [0.503] Loss at step 200: [0.466]
Loss at step 300: [0.423] Loss at step 220: [0.499]
Loss at step 320: [0.509] Loss at step 240: [0.614]
Loss at step 340: [0.348] Loss at step 260: [0.585]
Loss at step 360: [0.452] Loss at step 280: [0.503]
Loss at step 380: [0.397] Loss at step 300: [0.423]
Loss at step 400: [0.54] Loss at step 320: [0.509]
Loss at step 420: [0.341] Loss at step 340: [0.348]
Loss at step 440: [0.337] Loss at step 360: [0.452]
Loss at step 460: [0.155] Loss at step 380: [0.397]
Final loss: [0.164] Loss at step 400: [0.54]
_simple_img_conv_pool_1_conv2d W's mean is: 0.00606656912714 Loss at step 420: [0.341]
_simple_img_conv_pool_1_conv2d Bias's mean is: -3.4576318285e-05 Loss at step 440: [0.337]
Loss at step 460: [0.155]
Final loss: [0.164]
_simple_img_conv_pool_1_conv2d W's mean is: 0.00606656912714
_simple_img_conv_pool_1_conv2d Bias's mean is: -3.4576318285e-05
```
7. 性能 7. 性能
在使用`fluid.dygraph.guard()`可以通过传入`fluid.CUDAPlace(0)`或者`fluid.CPUPlace()`来选择执行DyGraph的设备,通常如果不做任何处理将会自动适配您的设备。 在使用`fluid.dygraph.guard()`可以通过传入`fluid.CUDAPlace(0)`或者`fluid.CPUPlace()`来选择执行DyGraph的设备,通常如果不做任何处理将会自动适配您的设备。
## 模型参数的保存 ## 模型参数的保存

在模型训练中可以使用` fluid.dygraph.save_persistables(your_model_object.state_dict(), "save_dir")`来保存`your_model_object`中所有的模型参数。也可以自定义需要保存的“参数名” - “参数对象”的Python Dictionary传入。 
在模型训练中可以使用` fluid.dygraph.save_persistables(your_model_object.state_dict(), "save_dir")`来保存`your_model_object`中所有的模型参数。也可以自定义需要保存的“参数名” - “参数对象”的Python Dictionary传入。
同样可以使用`your_modle_object.load_dict(fluid.dygraph.load_persistables("save_dir"))`接口来恢复保存的模型参数从而达到继续训练的目的。 同样可以使用`your_modle_object.load_dict(fluid.dygraph.load_persistables("save_dir"))`接口来恢复保存的模型参数从而达到继续训练的目的。
下面的代码展示了如何在“手写数字识别”任务中保存参数并且读取已经保存的参数来继续训练。 下面的代码展示了如何在“手写数字识别”任务中保存参数并且读取已经保存的参数来继续训练。
dy_param_init_value={} ```python
for epoch in range(epoch_num): dy_param_init_value={}
for batch_id, data in enumerate(train_reader()): for epoch in range(epoch_num):
dy_x_data = np.array( for batch_id, data in enumerate(train_reader()):
[x[0].reshape(1, 28, 28) dy_x_data = np.array(
for x in data]).astype('float32') [x[0].reshape(1, 28, 28)
y_data = np.array( for x in data]).astype('float32')
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1) y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data) img = to_variable(dy_x_data)
label.stop_gradient = True label = to_variable(y_data)
label.stop_gradient = True
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label) cost = mnist(img)
avg_loss = fluid.layers.mean(loss) loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss.numpy()
dy_out = avg_loss.numpy()
avg_loss.backward()
sgd.minimize(avg_loss) avg_loss.backward()
fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir") sgd.minimize(avg_loss)
mnist.clear_gradients() fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir")
mnist.clear_gradients()
for param in mnist.parameters():
dy_param_init_value[param.name] = param.numpy() for param in mnist.parameters():
mnist.load_dict(fluid.dygraph.load_persistables("save_dir")) dy_param_init_value[param.name] = param.numpy()
restore = mnist.parameters() mnist.load_dict(fluid.dygraph.load_persistables("save_dir"))
# check save and load restore = mnist.parameters()
success = True # check save and load
for value in restore: success = True
if (not np.allclose(value.numpy(), dy_param_init_value[value.name])) or (not np.isfinite(value.numpy().all())) or (np.isnan(value.numpy().any())): for value in restore:
success = False if (not np.allclose(value.numpy(), dy_param_init_value[value.name])) or (not np.isfinite(value.numpy().all())) or (np.isnan(value.numpy().any())):
print("model save and load success? {}".format(success)) success = False
print("model save and load success? {}".format(success))
```
...@@ -443,134 +491,140 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供: ...@@ -443,134 +491,140 @@ PaddlePaddle DyGraph是一个更加灵活易用的模式,可提供:
我们在第二个`fluid.dygraph.guard()`上下文中利用之前保存的`checkpoint`进行预测,同样的在执行预测前需要使用`YourModel.eval()`来切换的预测模式。 我们在第二个`fluid.dygraph.guard()`上下文中利用之前保存的`checkpoint`进行预测,同样的在执行预测前需要使用`YourModel.eval()`来切换的预测模式。
with fluid.dygraph.guard(): ```python
fluid.default_startup_program().random_seed = seed with fluid.dygraph.guard():
fluid.default_main_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist = MNIST("mnist")
adam = AdamOptimizer(learning_rate=0.001) mnist = MNIST("mnist")
train_reader = paddle.batch( adam = AdamOptimizer(learning_rate=0.001)
paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True) train_reader = paddle.batch(
test_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True)
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE, drop_last=True) test_reader = paddle.batch(
for epoch in range(epoch_num): paddle.dataset.mnist.test(), batch_size=BATCH_SIZE, drop_last=True)
for batch_id, data in enumerate(train_reader()): for epoch in range(epoch_num):
dy_x_data = np.array( for batch_id, data in enumerate(train_reader()):
[x[0].reshape(1, 28, 28) dy_x_data = np.array(
for x in data]).astype('float32') [x[0].reshape(1, 28, 28)
y_data = np.array( for x in data]).astype('float32')
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1) y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data) img = to_variable(dy_x_data)
label.stop_gradient = True label = to_variable(y_data)
label.stop_gradient = True
cost, acc = mnist(img, label)
cost, acc = mnist(img, label)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss) loss = fluid.layers.cross_entropy(cost, label)
avg_loss.backward() avg_loss = fluid.layers.mean(loss)
adam.minimize(avg_loss) avg_loss.backward()
# save checkpoint adam.minimize(avg_loss)
mnist.clear_gradients() # save checkpoint
if batch_id % 100 == 0: mnist.clear_gradients()
print("Loss at epoch {} step {}: {:}".format(epoch, batch_id, avg_loss.numpy())) if batch_id % 100 == 0:
mnist.eval() print("Loss at epoch {} step {}: {:}".format(epoch, batch_id, avg_loss.numpy()))
test_cost, test_acc = self._test_train(test_reader, mnist, BATCH_SIZE) mnist.eval()
mnist.train() test_cost, test_acc = self._test_train(test_reader, mnist, BATCH_SIZE)
print("Loss at epoch {} , Test avg_loss is: {}, acc is: {}".format(epoch, test_cost, test_acc)) mnist.train()
print("Loss at epoch {} , Test avg_loss is: {}, acc is: {}".format(epoch, test_cost, test_acc))
fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir")
print("checkpoint saved") fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir")
print("checkpoint saved")
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed with fluid.dygraph.guard():
fluid.default_main_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist_infer = MNIST("mnist")
# load checkpoint mnist_infer = MNIST("mnist")
mnist_infer.load_dict( # load checkpoint
fluid.dygraph.load_persistables("save_dir")) mnist_infer.load_dict(
print("checkpoint loaded") fluid.dygraph.load_persistables("save_dir"))
print("checkpoint loaded")
# start evaluate mode
mnist_infer.eval() # start evaluate mode
def load_image(file): mnist_infer.eval()
im = Image.open(file).convert('L') def load_image(file):
im = im.resize((28, 28), Image.ANTIALIAS) im = Image.open(file).convert('L')
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32) im = im.resize((28, 28), Image.ANTIALIAS)
im = im / 255.0 * 2.0 - 1.0 im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
return im im = im / 255.0 * 2.0 - 1.0
return im
cur_dir = os.path.dirname(os.path.realpath(__file__))
tensor_img = load_image(cur_dir + '/image/infer_3.png') cur_dir = os.path.dirname(os.path.realpath(__file__))
tensor_img = load_image(cur_dir + '/image/infer_3.png')
results = mnist_infer(to_variable(tensor_img))
lab = np.argsort(results.numpy()) results = mnist_infer(to_variable(tensor_img))
print("Inference result of image/infer_3.png is: %d" % lab[0][-1]) lab = np.argsort(results.numpy())
print("Inference result of image/infer_3.png is: %d" % lab[0][-1])
```
Loss at epoch 3 , Test avg_loss is: 0.0721620170576, acc is: 0.97796474359 得到输出:
Loss at epoch 4 step 0: [0.01078923]
Loss at epoch 4 step 100: [0.10447877] ```
Loss at epoch 4 step 200: [0.05149534] Loss at epoch 3 , Test avg_loss is: 0.0721620170576, acc is: 0.97796474359
Loss at epoch 4 step 300: [0.0122997] Loss at epoch 4 step 0: [0.01078923]
Loss at epoch 4 step 400: [0.0281883] Loss at epoch 4 step 100: [0.10447877]
Loss at epoch 4 step 500: [0.10709661] Loss at epoch 4 step 200: [0.05149534]
Loss at epoch 4 step 600: [0.1306036] Loss at epoch 4 step 300: [0.0122997]
Loss at epoch 4 step 700: [0.01628026] Loss at epoch 4 step 400: [0.0281883]
Loss at epoch 4 step 800: [0.07947419] Loss at epoch 4 step 500: [0.10709661]
Loss at epoch 4 step 900: [0.02067161] Loss at epoch 4 step 600: [0.1306036]
Loss at epoch 4 , Test avg_loss is: 0.0802323290939, acc is: 0.976963141026 Loss at epoch 4 step 700: [0.01628026]
checkpoint saved Loss at epoch 4 step 800: [0.07947419]
checkpoint loaded Loss at epoch 4 step 900: [0.02067161]
Loss at epoch 4 , Test avg_loss is: 0.0802323290939, acc is: 0.976963141026
checkpoint saved
Ran 1 test in 208.017s checkpoint loaded
Inference result of image/infer_3.png is: 3
Ran 1 test in 208.017s
Inference result of image/infer_3.png is: 3
```
## 编写兼容的模型 ## 编写兼容的模型
以上一步中手写数字识别的例子为例,相同的模型代码可以直接在PaddlePaddle的`Executor`中执行: 以上一步中手写数字识别的例子为例,相同的模型代码可以直接在PaddlePaddle的`Executor`中执行:
exe = fluid.Executor(fluid.CPUPlace( ```python
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
mnist = MNIST("mnist")
sgd = SGDOptimizer(learning_rate=1e-3) mnist = MNIST("mnist")
train_reader = paddle.batch( sgd = SGDOptimizer(learning_rate=1e-3)
paddle.dataset.mnist.train(), batch_size= BATCH_SIZE, drop_last=True) train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size= BATCH_SIZE, drop_last=True)
img = fluid.layers.data(
name='pixel', shape=[1, 28, 28], dtype='float32') img = fluid.layers.data(
label = fluid.layers.data(name='label', shape=[1], dtype='int64') name='pixel', shape=[1, 28, 28], dtype='float32')
cost = mnist(img) label = fluid.layers.data(name='label', shape=[1], dtype='int64')
loss = fluid.layers.cross_entropy(cost, label) cost = mnist(img)
avg_loss = fluid.layers.mean(loss) loss = fluid.layers.cross_entropy(cost, label)
sgd.minimize(avg_loss) avg_loss = fluid.layers.mean(loss)
sgd.minimize(avg_loss)
out = exe.run(fluid.default_startup_program())
out = exe.run(fluid.default_startup_program())
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_reader()): for epoch in range(epoch_num):
static_x_data = np.array( for batch_id, data in enumerate(train_reader()):
[x[0].reshape(1, 28, 28) static_x_data = np.array(
for x in data]).astype('float32') [x[0].reshape(1, 28, 28)
y_data = np.array( for x in data]).astype('float32')
[x[1] for x in data]).astype('int64').reshape([BATCH_SIZE, 1]) y_data = np.array(
[x[1] for x in data]).astype('int64').reshape([BATCH_SIZE, 1])
fetch_list = [avg_loss.name]
out = exe.run( fetch_list = [avg_loss.name]
fluid.default_main_program(), out = exe.run(
feed={"pixel": static_x_data, fluid.default_main_program(),
"label": y_data}, feed={"pixel": static_x_data,
fetch_list=fetch_list) "label": y_data},
fetch_list=fetch_list)
static_out = out[0]
static_out = out[0]
```
\ No newline at end of file
...@@ -171,6 +171,9 @@ PSERVER 节点中会保存所有 TRAINER 节点的状态信息,在 TRAINER 结 ...@@ -171,6 +171,9 @@ PSERVER 节点中会保存所有 TRAINER 节点的状态信息,在 TRAINER 结
# training process ... # training process ...
exe.close() # notify PServer to destory the resource exe.close() # notify PServer to destory the resource
注意:所有的trainer在退出时都需要调用exe.close()。
启动分布式训练任务 启动分布式训练任务
-------------------- --------------------
......
...@@ -167,6 +167,7 @@ The status information of all trainer nodes is saved in the pserver node. When t ...@@ -167,6 +167,7 @@ The status information of all trainer nodes is saved in the pserver node. When t
# training process ... # training process ...
exe.close() # notify PServer to destory the resource exe.close() # notify PServer to destory the resource
Note: every trainer needs to call exe.close() when the trainer finishes.
Start a Distributed Training Task Start a Distributed Training Task
---------------------------------- ----------------------------------
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册