data_cn.rst 1.7 KB
Newer Older
1 2 3 4 5

数值计算
==================


Z
zq19 已提交
6
FLAGS_enable_cublas_tensor_op_math
7 8 9 10 11 12 13 14 15 16 17
*******************************************
(始于1.2.0)

该flag表示是否使用Tensor Core,但可能会因此降低部分精确度。

取值范围
---------------
Bool型,缺省值为False。

示例
-------
Z
zq19 已提交
18
FLAGS_enable_cublas_tensor_op_math=True - 使用Tensor Core。
19 20


Z
zq19 已提交
21
FLAGS_use_mkldnn
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
*******************************************
(始于0.13.0)

在预测或训练过程中,可以通过该选项选择使用Intel MKL-DNN(https://github.com/intel/mkl-dnn)库运行。
“用于深度神经网络的英特尔(R)数学核心库(Intel(R) MKL-DNN)”是一个用于深度学习应用程序的开源性能库。该库加速了英特尔(R)架构上的深度学习应用程序和框架。Intel MKL-DNN包含矢量化和线程化构建建块,您可以使用它们来实现具有C和C ++接口的深度神经网络(DNN)。

取值范围
---------------
Bool型,缺省值为False。

示例
-------
FLAGS_use_mkldnn=True - 开启使用MKL-DNN运行。

注意
-------
FLAGS_use_mkldnn仅用于python训练和预测脚本。要在CAPI中启用MKL-DNN,请设置选项 -DWITH_MKLDNN=ON。
英特尔MKL-DNN支持英特尔64架构和兼容架构。
该库对基于以下设备的系统进行了优化:
英特尔SSE4.1支持的英特尔凌动(R)处理器;
第4代,第5代,第6代,第7代和第8代英特尔(R)Core(TM)处理器;
英特尔(R)Xeon(R)处理器E3,E5和E7系列(原Sandy Bridge,Ivy Bridge,Haswell和Broadwell);
英特尔(R)Xeon(R)可扩展处理器(原Skylake和Cascade Lake);
英特尔(R)Xeon Phi(TM)处理器(原Knights Landing and Knights Mill);
兼容处理器。