FtrlOptimizer_cn.rst 8.0 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
.. _cn_api_fluid_optimizer_FtrlOptimizer:

FtrlOptimizer
-------------------------------

.. py:class:: paddle.fluid.optimizer.FtrlOptimizer(learning_rate, l1=0.0, l2=0.0, lr_power=-0.5,regularization=None, name=None)
 
FTRL (Follow The Regularized Leader) Optimizer.

FTRL 原始论文: ( `https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf <https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf>`_)


.. math::
           &\qquad new\_accum=squared\_accum+grad^2\\\\
           &\qquad if(lr\_power==−0.5):\\
           &\qquad \qquad linear\_accum+=grad-\frac{\sqrt{new\_accum}-\sqrt{squared\_accum}}{learning\_rate*param}\\
           &\qquad else:\\
           &\qquad \qquad linear\_accum+=grad-\frac{new\_accum^{-lr\_power}-accum^{-lr\_power}}{learning\_rate*param}\\\\
           &\qquad x=l1*sign(linear\_accum)−linear\_accum\\\\
           &\qquad if(lr\_power==−0.5):\\
           &\qquad \qquad y=\frac{\sqrt{new\_accum}}{learning\_rate}+(2*l2)\\
           &\qquad \qquad pre\_shrink=\frac{x}{y}\\
           &\qquad \qquad param=(abs(linear\_accum)>l1).select(pre\_shrink,0.0)\\
           &\qquad else:\\
           &\qquad \qquad y=\frac{new\_accum^{-lr\_power}}{learning\_rate}+(2*l2)\\
           &\qquad \qquad pre\_shrink=\frac{x}{y}\\
           &\qquad \qquad param=(abs(linear\_accum)>l1).select(pre\_shrink,0.0)\\\\
           &\qquad squared\_accum+=grad^2


参数:
  - **learning_rate** (float|Variable)-全局学习率。
  - **l1** (float) - L1 regularization strength.
  - **l2** (float) - L2 regularization strength.
  - **lr_power** (float) - 学习率降低指数
  - **regularization** - 正则化器,例如 ``fluid.regularizer.L2DecayRegularizer`` 
  - **name** — 可选的名称前缀

抛出异常:
  - ``ValueError`` - 如果 ``learning_rate`` , ``rho`` ,  ``epsilon`` , ``momentum``  为 None.

**代码示例**

.. code-block:: python
        
    import paddle
    import paddle.fluid as fluid
    import numpy as np
     
    place = fluid.CPUPlace()
    main = fluid.Program()
    with fluid.program_guard(main):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
    
        ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
        ftrl_optimizer.minimize(avg_cost)
    
        fetch_list = [avg_cost]
        train_reader = paddle.batch(
            paddle.dataset.uci_housing.train(), batch_size=1)
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        for data in train_reader():
            exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


.. note::
     目前, FtrlOptimizer 不支持 sparse parameter optimization



77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
.. py:method:: apply_gradients(params_grads)

为给定的params_grads对附加优化算子,为minimize过程的第二步

参数:
    - **params_grads** (list)- 用于优化的(param, grad)对组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

**代码示例**

.. code-block:: python

    import paddle.fluid as fluid
    loss = network()
    optimizer = fluid.optimizer.SGD(learning_rate=0.1)
    params_grads = optimizer.backward(loss)
    # you may append operations for params_grads here
    # ...
    optimizer.apply_gradients(params_grads)


.. py:method:: apply_optimize(loss, startup_program, params_grads)

为给定的params_grads对附加优化算子,为minimize过程的第二步。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **params_grads** (list)- 用于优化的(param, grad)对组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

.. py:method:: backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None)

自动做diff来向当前program附加反向算子,为minimize过程的第一步。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **parameter_list** (list) – 待更新的Variables组成的列表
    - **no_grad_set** (set|None) – 应该被无视的Variables集合
    - **callbacks** (list|None) – 当为某参数附加反向算子时所要运行的callables组成的列表

返回:  附加在当前Program的算子组成的列表

返回类型:  list

**代码示例**

详见apply_gradients的示例


.. py:method:: load(stat_dict)

在dygraph模式下,附带学习率衰减来加载优化器。

参数:
    - **stat_dict** – load_persistable方法加载的dict

**代码示例**

.. code-block:: python

    from __future__ import print_function
    import numpy as np
    import paddle
    import paddle.fluid as fluid
    from paddle.fluid.optimizer import SGDOptimizer
    from paddle.fluid.dygraph.nn import FC
    from paddle.fluid.dygraph.base import to_variable

    class MLP(fluid.Layer):
        def __init__(self, name_scope):
            super(MLP, self).__init__(name_scope)

            self._fc1 = FC(self.full_name(), 10)
            self._fc2 = FC(self.full_name(), 10)

        def forward(self, inputs):
            y = self._fc1(inputs)
            y = self._fc2(y)
            return y

    with fluid.dygraph.guard():
        mlp = MLP('mlp')
        optimizer2 = SGDOptimizer(
            learning_rate=fluid.layers.natural_exp_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))

        train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

        for batch_id, data in enumerate(train_reader()):
            dy_x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')

            y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)

            img = to_variable(dy_x_data)
            label = to_variable(y_data)
            label._stop_gradient = True
            cost = mlp(img)
            avg_loss = fluid.layers.reduce_mean(cost)
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            mlp.clear_gradients()
            fluid.dygraph.save_persistables(
                    mlp.state_dict(), [optimizer, optimizer2], "save_dir_2")
            if batch_id == 2:
                    break

    with fluid.dygraph.guard():
        mlp_load = MLP('mlp')
        optimizer_load2 = SGDOptimizer(
                learning_rate=fluid.layers.natural_exp_decay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True))
        parameters, optimizers = fluid.dygraph.load_persistables(
            "save_dir_2")
        mlp_load.load_dict(parameters)
        optimizer_load2.load(optimizers)
    self.assertTrue(optimizer2._learning_rate.__dict__ == optimizer_load2._learning_rate.__dict__)


.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)


通过更新parameter_list来添加操作,进而使损失最小化。

该算子相当于backward()和apply_gradients()功能的合体。

参数:
    - **loss** (Variable) – 用于优化过程的损失值变量
    - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
    - **parameter_list** (list) – 待更新的Variables组成的列表
    - **no_grad_set** (set|None) – 应该被无视的Variables集合
    - **grad_clip** (GradClipBase|None) – 梯度裁剪的策略

返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化

返回类型:   tuple

H
Hao Wang 已提交
230