sequence_conv_cn.rst 5.0 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5
.. _cn_api_fluid_layers_sequence_conv:

sequence_conv
-------------------------------

6
:api_attr: 声明式编程(静态图)专用API
7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
.. py:function:: paddle.fluid.layers.sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=True, padding_start=None, bias_attr=None, param_attr=None, act=None, name=None)

**注意:该OP的输入只能是LoDTensor,如果您需要处理的输入是Tensor类型,请使用conv2d函数(fluid.layers.** :ref:`cn_api_fluid_layers_conv2d` **)。**

该OP在给定的卷积参数下(如卷积核数目、卷积核大小等),对输入的变长序列(sequence)LoDTensor进行卷积操作。默认情况下,该OP会自适应地在每个输入序列的两端等长地填充全0数据,以确保卷积后的序列输出长度和输入长度一致。支持通过配置 ``padding_start`` 参数来指定序列填充的行为。

**提示:** 参数 ``padding`` 为无用参数,将在未来的版本中被移除。

::

    这里详细介绍数据填充操作的细节:
    对于一个min-batch为2的变长序列输入,分别包含3个、1个时间步(time_step),
    假设输入input是一个[4, N]的float类型LoDTensor,为了方便,这里假设N = 2
        input.data = [[1, 1],
                      [2, 2],
                      [3, 3],
                      [4, 4]]
        input.lod = [[0, 3, 4]]
    
    即输入input总共有4个词,每个词被表示为一个2维向量。

    Case1:

    若 padding_start = -1,filter_size = 3,
    则两端填充数据的长度分别为:
        up_pad_len = max(0, -padding_start) = 1
        down_pad_len = max(0, filter_size + padding_start - 1) = 1

    则以此填充后的输入数据为:
        data_aftet_padding = [[0, 0, 1, 1, 2, 2],
                              [1, 1, 2, 2, 3, 3],
                              [2, 2, 3, 3, 0, 0],
                              [0, 0, 4, 4, 0, 0]]
    
    它将和卷积核矩阵相乘得到最终的输出,假设num_filters = 3:
        output.data = [[ 0.3234, -0.2334,  0.7433],
                       [ 0.5646,  0.9464, -0.1223],
                       [-0.1343,  0.5653,  0.4555],
                       [ 0.9954, -0.1234, -0.1234]]
        output.shape = [4, 3]     # 3 = num_filters
        output.lod = [[0, 3, 4]]  # 保持不变

H
Hao Wang 已提交
50 51 52


参数:
53 54 55 56 57 58 59 60 61
    - **input** (Variable) - 维度为 :math:`(M, K)` 的二维LoDTensor,仅支持lod_level为1。其中M是mini-batch的总时间步数,K是输入的 ``hidden_size`` 特征维度。数据类型为float32或float64。
    - **num_filters** (int) - 滤波器的数量。
    - **filter_size** (int) - 滤波器的高度(H);不支持指定滤波器宽度(W),宽度固定取值为输入的 ``hidden_size`` 。默认值为3。
    - **filter_stride** (int) - 滤波器每次移动的步长。目前只支持取值为1,默认为1。
    - **padding** (bool) - **此参数不起任何作用,将在未来的版本中被移除。** 无论 ``padding`` 取值为False或者True,默认地,该函数会自适应地在每个输入序列的两端等长地填充全0数据,以确保卷积后的输出序列长度和输入长度一致。默认填充是考虑到输入的序列长度可能会小于卷积核大小,这会导致无正确计算卷积输出。填充为0的数据在训练过程中不会被更新。默认为True。
    - **padding_start** (int) - 表示对输入序列填充时的起始位置,可以为负值。负值表示在每个序列的首端填充 ``|padding_start|`` 个时间步(time_step)的全0数据;正值表示对每个序列跳过前 ``padding_start`` 个时间步的数据。同时在末端填充 :math:`filter\_size + padding\_start - 1` 个时间步的全0数据,以保证卷积输出序列长度和输入长度一致。如果 ``padding_start`` 为None,则在每个序列的两端填充 :math:`\frac{filter\_size}{2}` 个时间步的全0数据;如果 ``padding_start`` 设置为0,则只在序列的末端填充 :math:`filter\_size - 1` 个时间步的全0数据。默认为None。
    - **bias_attr** (ParamAttr) - 指定偏置参数属性的对象。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
    - **param_attr** (ParamAttr) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。
    - **act** (str) – 应用于输出上的激活函数,如tanh、softmax、sigmoid,relu等,支持列表请参考 :ref:`api_guide_activations` ,默认值为None。
62
    - **name** (str,可选) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
63 64 65 66 67


返回:和输入序列等长的LoDTensor,数据类型和输入一致,为float32或float64。

返回类型:Variable
H
Hao Wang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

**代码示例**

..  code-block:: python

    import paddle.fluid as fluid
    x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
    x_conved = fluid.layers.sequence_conv(x,2)