gru_unit_cn.rst 4.2 KB
Newer Older
H
Hao Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
.. _cn_api_fluid_layers_gru_unit:

gru_unit
-------------------------------

.. py:function:: paddle.fluid.layers.gru_unit(input, hidden, size, param_attr=None, bias_attr=None, activation='tanh', gate_activation='sigmoid', origin_mode=False)

GRU单元层。GRU执行步骤基于如下等式:


如果origin_mode为True,则该运算公式来自论文
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling  <https://arxiv.org/pdf/1412.3555.pdf>`_ 。

公式如下:

.. math::
    u_t=actGate(xu_t+W_{u}h_{t-1}+b_u)
.. math::
    r_t=actGate(xr_t+W_{r}h_{t-1}+b_r)
.. math::
    m_t=actNode(xm_t+W_{c}dot(r_t,h_{t-1})+b_m)
.. math::
    h_t=dot((1-u_t),m_t)+dot(u_t,h_{t-1})


如果origin_mode为False,则该运算公式来自论文
`Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ 。

.. math::
    u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\
    r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\
    \tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\
    h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \tilde{h_t}


GRU单元的输入包括 :math:`z_t` , :math:`h_{t-1}` 。在上述等式中, :math:`z_t` 会被分割成三部分: :math:`xu_t` 、 :math:`xr_t` 和 :math:`xm_t`  。
这意味着要为一批输入实现一个全GRU层,我们需要采用一个全连接层,才能得到 :math:`z_t=W_{fc}x_t` 。
:math:`u_t` 和 :math:`r_t` 分别代表了GRU神经元的update gates(更新门)和reset gates(重置门)。
和LSTM不同,GRU少了一个门(它没有LSTM的forget gate)。但是它有一个叫做中间候选隐藏状态(intermediate candidate hidden output)的输出,
记为 :math:`m_t` 。 该层有三个输出: :math:`h_t, dot(r_t,h_{t-1})` 以及 :math:`u_t,r_t,m_t` 的连结(concatenation)。




参数:
  - **input** (Variable) – 经FC层变换后的当前步骤的输入值
  - **hidden** (Variable) –  从上一步而来的gru unit 隐藏状态值(hidden value)
  - **size** (integer) – 输入数据的维度
  - **param_attr** (ParamAttr|None) – 可学习的隐藏层权重矩阵的参数属性。
    注意:
      - 该权重矩阵形为 :math:`(T×3D)` , :math:`D` 是隐藏状态的规模(hidden size)
      - 该权重矩阵的所有元素由两部分组成, 一是update gate和reset gate的权重,形为 :math:`(D×2D)` ;二是候选隐藏状态(candidate hidden state)的权重矩阵,形为 :math:`(D×D)`
    如果该函数参数值为None或者 ``ParamAttr`` 类中的属性之一,gru_unit则会创建一个 ``ParamAttr`` 类的对象作为 param_attr。如果param_attr没有被初始化,那么会由Xavier来初始化它。默认值为None
  - **bias_attr** (ParamAttr|bool|None) - GRU的bias变量的参数属性。形为 :math:`(1x3D)` 的bias连结(concatenate)在update gates(更新门),reset gates(重置门)以及candidate calculations(候选隐藏状态计算)中的bias。如果值为False,那么上述三者将没有bias参与运算。若值为None或者 ``ParamAttr`` 类中的属性之一,gru_unit则会创建一个 ``ParamAttr`` 类的对象作为 bias_attr。如果bias_attr没有被初始化,那它会被默认初始化为0。默认值为None。
  - **activation** (string) –  神经元 “actNode” 的激励函数(activation)类型。默认类型为‘tanh’
  - **gate_activation** (string) – 门 “actGate” 的激励函数(activation)类型。 默认类型为 ‘sigmoid’


返回:  hidden value(隐藏状态的值),reset-hidden value(重置隐藏状态值),gate values(门值)

返回类型:  元组(tuple)


**代码示例**

..  code-block:: python

    import paddle.fluid as fluid

    dict_dim, emb_dim = 128, 64
    data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
    emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
    hidden_dim = 512
    x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
    pre_hidden = fluid.layers.data(
        name='pre_hidden', shape=[hidden_dim], dtype='float32')
    hidden = fluid.layers.gru_unit(
        input=x, hidden=pre_hidden, size=hidden_dim * 3)