# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import sys import argparse import logging import json from collections import namedtuple log = logging.getLogger(__name__) Example = namedtuple('Example', ['qas_id', 'question_text', 'doc_tokens', 'orig_answer_text', 'start_position', 'end_position']) Feature = namedtuple("Feature", ["unique_id", "example_index", "doc_span_index", "tokens", "token_to_orig_map", "token_is_max_context", "token_ids", "position_ids", "text_type_ids", "start_position", "end_position"]) def _tokenize_chinese_chars(text): """Adds whitespace around any CJK character.""" def _is_chinese_char(cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False output = [] buff = "" for char in text: cp = ord(char) if _is_chinese_char(cp): if buff != "": output.append(buff) buff = "" output.append(char) else: buff += char if buff != "": output.append(buff) return output def _check_is_max_context(doc_spans, cur_span_index, position): """chech is max context""" best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """improve answer span""" tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def read_files(input_file, is_training): """read file""" examples = [] with open(input_file, "r") as f: input_data = json.load(f)["data"] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_pos = None end_pos = None orig_answer_text = None if is_training: if len(qa["answers"]) != 1: raise ValueError( "For training, each question should have exactly 1 answer." ) answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) doc_tokens = [paragraph_text[:answer_offset], paragraph_text[answer_offset: answer_offset + answer_length], paragraph_text[answer_offset + answer_length:]] start_pos = 1 end_pos = 1 actual_text = " ".join(doc_tokens[start_pos:(end_pos + 1)]) if actual_text.find(orig_answer_text) == -1: log.info("Could not find answer: '%s' vs. '%s'", actual_text, orig_answer_text) continue else: doc_tokens = _tokenize_chinese_chars(paragraph_text) example = Example( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_pos, end_position=end_pos) examples.append(example) return examples def convert_example_to_features(examples, max_seq_length, tokenizer, is_training, doc_stride=128, max_query_length=64): """convert example to feature""" features = [] unique_id = 1000000000 for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0: max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) #log.info(orig_to_tok_index, example.start_position) tok_start_position = None tok_end_position = None if is_training: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 _DocSpan = namedtuple("DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} text_type_ids = [] tokens.append("[CLS]") text_type_ids.append(0) for token in query_tokens: tokens.append(token) text_type_ids.append(0) tokens.append("[SEP]") text_type_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[ split_token_index] is_max_context = _check_is_max_context( doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) text_type_ids.append(1) tokens.append("[SEP]") text_type_ids.append(1) token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) start_position = None end_position = None if is_training: doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset feature = Feature( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, token_ids=token_ids, position_ids=position_ids, text_type_ids=text_type_ids, start_position=start_position, end_position=end_position) features.append(feature) unique_id += 1 return features if __name__ == "__main__": parser = argparse.ArgumentParser(description='main') parser.add_argument("--input", type=str, default=None) args = parser.parse_args() from ernie.tokenizing_ernie import ErnieTokenizer tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0') examples = read_files(args.input, True) features = convert_example_to_features(examples, 512, tokenizer, True) log.debug(len(examples)) log.debug(len(features))