# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FeatureColumns and many Column""" from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import os import sys import struct from six.moves import zip, map import itertools import gzip from functools import partial import six import logging import numpy as np from glob import glob from propeller.data.feature_column import FeatureColumns as FCBase from propeller.paddle.data.functional import Dataset import multiprocessing log = logging.getLogger(__name__) __all__ = ['FeatureColumns'] class FeatureColumns(FCBase): """A Dataset Factory object""" def build_dataset(self, *args, **kwargs): """ build `Dataset` from `data_dir` or `data_file` if `use_gz`, will try to convert data_files to gz format and save to `gz_dir`, if `gz_dir` not given, will create one. """ ds = super(FeatureColumns, self).build_dataset(*args, **kwargs) ds.__class__ = Dataset return ds def build_dataset_from_stdin(self, *args, **kwargs): """doc""" ds = super(FeatureColumns, self).build_dataset_from_stdin(*args, **kwargs) ds.__class__ = Dataset return ds