# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid def cast_fp16_to_fp32(i, o, prog): prog.global_block().append_op( type="cast", inputs={"X": i}, outputs={"Out": o}, attrs={ "in_dtype": fluid.core.VarDesc.VarType.FP16, "out_dtype": fluid.core.VarDesc.VarType.FP32 }) def cast_fp32_to_fp16(i, o, prog): prog.global_block().append_op( type="cast", inputs={"X": i}, outputs={"Out": o}, attrs={ "in_dtype": fluid.core.VarDesc.VarType.FP32, "out_dtype": fluid.core.VarDesc.VarType.FP16 }) def copy_to_master_param(p, block): v = block.vars.get(p.name, None) if v is None: raise ValueError("no param name %s found!" % p.name) new_p = fluid.framework.Parameter( block=block, shape=v.shape, dtype=fluid.core.VarDesc.VarType.FP32, type=v.type, lod_level=v.lod_level, stop_gradient=p.stop_gradient, trainable=p.trainable, optimize_attr=p.optimize_attr, regularizer=p.regularizer, gradient_clip_attr=p.gradient_clip_attr, error_clip=p.error_clip, name=v.name + ".master") return new_p def create_master_params_grads(params_grads, main_prog, startup_prog, loss_scaling): master_params_grads = [] tmp_role = main_prog._current_role OpRole = fluid.core.op_proto_and_checker_maker.OpRole main_prog._current_role = OpRole.Backward for p, g in params_grads: # create master parameters master_param = copy_to_master_param(p, main_prog.global_block()) startup_master_param = startup_prog.global_block()._clone_variable( master_param) startup_p = startup_prog.global_block().var(p.name) cast_fp16_to_fp32(startup_p, startup_master_param, startup_prog) # cast fp16 gradients to fp32 before apply gradients if g.name.find("layer_norm") > -1: if loss_scaling > 1: scaled_g = g / float(loss_scaling) else: scaled_g = g master_params_grads.append([p, scaled_g]) continue master_grad = fluid.layers.cast(g, "float32") if loss_scaling > 1: master_grad = master_grad / float(loss_scaling) master_params_grads.append([master_param, master_grad]) main_prog._current_role = tmp_role return master_params_grads def master_param_to_train_param(master_params_grads, params_grads, main_prog): for idx, m_p_g in enumerate(master_params_grads): train_p, _ = params_grads[idx] if train_p.name.find("layer_norm") > -1: continue with main_prog._optimized_guard([m_p_g[0], m_p_g[1]]): cast_fp32_to_fp16(m_p_g[0], train_p, main_prog)