# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import os import time import six import logging import multiprocessing from io import open # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. os.environ['FLAGS_eager_delete_tensor_gb'] = '0' # enable gc import paddle.fluid as fluid import reader.task_reader as task_reader from model.ernie import ErnieConfig from optimization import optimization from utils.init import init_pretraining_params, init_checkpoint from utils.args import print_arguments, check_cuda, prepare_logger from finetune.sequence_label import create_model, evaluate, predict, calculate_f1 from finetune_args import parser args = parser.parse_args() log = logging.getLogger() def main(args): ernie_config = ErnieConfig(args.ernie_config_path) ernie_config.print_config() if args.use_cuda: dev_list = fluid.cuda_places() place = dev_list[0] dev_count = len(dev_list) else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) reader = task_reader.SequenceLabelReader( vocab_path=args.vocab_path, label_map_config=args.label_map_config, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case, in_tokens=args.in_tokens, random_seed=args.random_seed, task_id=args.task_id) if not (args.do_train or args.do_val or args.do_test): raise ValueError("For args `do_train`, `do_val` and `do_test`, at " "least one of them must be True.") startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: train_data_generator = reader.data_generator( input_file=args.train_set, batch_size=args.batch_size, epoch=args.epoch, shuffle=True, phase="train") num_train_examples = reader.get_num_examples(args.train_set) if args.in_tokens: if args.batch_size < args.max_seq_len: raise ValueError('if in_tokens=True, batch_size should greater than max_sqelen, got batch_size:%d seqlen:%d' % (args.batch_size, args.max_seq_len)) max_train_steps = args.epoch * num_train_examples // ( args.batch_size // args.max_seq_len) // dev_count else: max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) log.info("Device count: %d" % dev_count) log.info("Num train examples: %d" % num_train_examples) log.info("Max train steps: %d" % max_train_steps) log.info("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_pyreader, graph_vars = create_model( args, pyreader_name='train_reader', ernie_config=ernie_config) scheduled_lr, loss_scaling = optimization( loss=graph_vars["loss"], warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, init_loss_scaling=args.init_loss_scaling, incr_every_n_steps=args.incr_every_n_steps, decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, incr_ratio=args.incr_ratio, decr_ratio=args.decr_ratio) if args.verbose: if args.in_tokens: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size // args.max_seq_len) else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) log.info("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_pyreader, graph_vars = create_model( args, pyreader_name='test_reader', ernie_config=ernie_config) test_prog = test_prog.clone(for_test=True) nccl2_num_trainers = 1 nccl2_trainer_id = 0 if args.is_distributed: trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") worker_endpoints = worker_endpoints_env.split(",") trainers_num = len(worker_endpoints) log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format(worker_endpoints, trainers_num, current_endpoint, trainer_id)) # prepare nccl2 env. config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id, trainers=worker_endpoints_env, current_endpoint=current_endpoint, program=train_program if args.do_train else test_prog, startup_program=startup_prog) nccl2_num_trainers = trainers_num nccl2_trainer_id = trainer_id exe = fluid.Executor(place) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: log.info( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: init_checkpoint( exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) elif args.init_pretraining_params: init_pretraining_params( exe, args.init_pretraining_params, main_program=startup_prog, use_fp16=args.use_fp16) elif args.do_val or args.do_test: if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_checkpoint( exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) if args.do_train: exec_strategy = fluid.ExecutionStrategy() if args.use_fast_executor: exec_strategy.use_experimental_executor = True exec_strategy.num_threads = dev_count exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope train_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, loss_name=graph_vars["loss"].name, exec_strategy=exec_strategy, main_program=train_program, num_trainers=nccl2_num_trainers, trainer_id=nccl2_trainer_id) train_pyreader.decorate_tensor_provider(train_data_generator) else: train_exe = None if args.do_val or args.do_test: test_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, main_program=test_prog, share_vars_from=train_exe) if args.do_train: train_pyreader.start() steps = 0 graph_vars["learning_rate"] = scheduled_lr time_begin = time.time() while True: try: steps += 1 if steps % args.skip_steps != 0: train_exe.run(fetch_list=[]) else: fetch_list = [ graph_vars["num_infer"].name, graph_vars["num_label"].name, graph_vars["num_correct"].name, graph_vars["loss"].name, graph_vars['learning_rate'].name, ] out = train_exe.run(fetch_list=fetch_list) num_infer, num_label, num_correct, np_loss, np_lr = out lr = float(np_lr[0]) loss = np_loss.mean() precision, recall, f1 = calculate_f1(num_label, num_infer, num_correct) if args.verbose: log.info("train pyreader queue size: %d, learning rate: %f" % (train_pyreader.queue.size(), lr if warmup_steps > 0 else args.learning_rate)) current_example, current_epoch = reader.get_train_progress() time_end = time.time() used_time = time_end - time_begin log.info("epoch: %d, progress: %d/%d, step: %d, loss: %f, " "f1: %f, precision: %f, recall: %f, speed: %f steps/s" % (current_epoch, current_example, num_train_examples, steps, loss, f1, precision, recall, args.skip_steps / used_time)) time_begin = time.time() if nccl2_trainer_id == 0 and steps % args.save_steps == 0: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) if nccl2_trainer_id == 0 and steps % args.validation_steps == 0: # evaluate dev set if args.do_val: evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, current_epoch, steps) # evaluate test set if args.do_test: predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, current_epoch, steps) except fluid.core.EOFException: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) train_pyreader.reset() break # final eval on dev set if nccl2_trainer_id ==0 and args.do_val: evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, current_epoch, 'final') if nccl2_trainer_id == 0 and args.do_test: predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, current_epoch, 'final') def evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, epoch, steps): # evaluate dev set batch_size = args.batch_size if args.predict_batch_size is None else args.predict_batch_size for ds in args.dev_set.split(','): #single card eval test_pyreader.decorate_tensor_provider( reader.data_generator( ds, batch_size=batch_size, epoch=1, dev_count=1, shuffle=False)) log.info("validation result of dataset {}:".format(ds)) info = evaluate(exe, test_prog, test_pyreader, graph_vars, args.num_labels) log.info(info + ', file: {}, epoch: {}, steps: {}'.format( ds, epoch, steps)) def predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, epoch, steps): test_sets = args.test_set.split(',') save_dirs = args.test_save.split(',') assert len(test_sets) == len(save_dirs), 'number of test_sets & test_save not match, got %d vs %d' % (len(test_sets), len(save_dirs)) batch_size = args.batch_size if args.predict_batch_size is None else args.predict_batch_size for test_f, save_f in zip(test_sets, save_dirs): test_pyreader.decorate_tensor_provider(reader.data_generator( test_f, batch_size=batch_size, epoch=1, dev_count=1, shuffle=False)) save_path = save_f + '.' + str(epoch) + '.' + str(steps) log.info("testing {}, save to {}".format(test_f, save_path)) res = predict(exe, test_prog, test_pyreader, graph_vars, dev_count=1) save_dir = os.path.dirname(save_path) if not os.path.exists(save_dir): os.makedirs(save_dir) tokenizer = reader.tokenizer rev_label_map = {v: k for k, v in six.iteritems(reader.label_map)} with open(save_path, 'w', encoding='utf8') as f: for id, s, p in res: id = ' '.join(tokenizer.convert_ids_to_tokens(id)) p = ' '.join(['%.5f' % pp[ss] for ss, pp in zip(s, p)]) s = ' '.join([rev_label_map[ss]for ss in s]) f.write('{}\t{}\t{}\n'.format(id, s, p)) if __name__ == '__main__': prepare_logger(log) print_arguments(args) check_cuda(args.use_cuda) main(args)