# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import os import numpy as np import types import gzip import logging import re import six import collections import tokenization import paddle import paddle.fluid as fluid from batching import prepare_batch_data class ErnieDataReader(object): def __init__(self, filelist, vocab_path, batch_size=4096, in_tokens=True, max_seq_len=512, shuffle_files=True, random_seed=1, epoch=100, voc_size=0, is_test=False, generate_neg_sample=False): self.vocab = self.load_vocab(vocab_path) self.filelist = filelist self.batch_size = batch_size self.in_tokens = in_tokens self.random_seed = random_seed self.shuffle_files = shuffle_files self.epoch = epoch self.current_epoch = 0 self.current_file_index = 0 self.total_file = 0 self.current_file = None self.voc_size = voc_size self.max_seq_len = max_seq_len self.pad_id = self.vocab["[PAD]"] self.cls_id = self.vocab["[CLS]"] self.sep_id = self.vocab["[SEP]"] self.mask_id = self.vocab["[MASK]"] self.is_test = is_test self.generate_neg_sample = generate_neg_sample self.trainer_id = 0 self.trainer_nums = 1 self.files = open(filelist).readlines() self.total_file = len(self.files) if self.is_test: self.epoch = 1 self.shuffle_files = False self.global_rng = np.random.RandomState(random_seed) if self.shuffle_files: if os.getenv("PADDLE_TRAINER_ID"): self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID")) if os.getenv("PADDLE_NODES_NUM"): self.trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM")) #renew total_file self.total_file = len(self.files) // self.trainer_nums * self.trainer_nums if len(self.files) < self.trainer_nums: raise RuntimeError('not enouph train file to shard, file:%d num_trainer:%d' % (len(self.files), self.trainer_nums)) tmp_files = [] for each in range(epoch): each_files = self.files self.global_rng.shuffle(each_files) tmp_files += each_files self.files = tmp_files #renew epochs self.epoch = len(self.files) // self.total_file * self.total_file assert self.total_file > 0, \ "[Error] data_dir is empty or less than %d" % self.trainer_nums if self.in_tokens: assert self.batch_size > 100, "Current batch size means total token's number, \ it should not be set to too small number." def get_progress(self): """return current progress of traning data """ return self.current_epoch, self.current_file_index, self.total_file, self.current_file, self.mask_type def parse_line(self, line, max_seq_len=512): """ parse one line to token_ids, sentence_ids, pos_ids, label """ line = line.strip().split(";") assert len(line) == 5, \ "One sample must have %d fields!" % 5 (token_ids, sent_ids, pos_ids, seg_labels, label) = line token_ids = [int(token) for token in token_ids.split(" ")] sent_ids = [int(token) for token in sent_ids.split(" ")] pos_ids = [int(token) for token in pos_ids.split(" ")] seg_labels = [int(seg_label) for seg_label in seg_labels.split(" ")] assert len(token_ids) == len(sent_ids) == len(pos_ids) == len( seg_labels ), "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids) == len(seg_labels)" label = int(label) if len(token_ids) > max_seq_len: return None return [token_ids, sent_ids, pos_ids, label, seg_labels] def read_file(self, file): assert file.endswith('.gz'), "[ERROR] %s is not a gzip file" % file with gzip.open(file, "rb") as f: for line in f: line = line.decode('utf8') parsed_line = self.parse_line( line, max_seq_len=self.max_seq_len) if parsed_line is None: continue yield parsed_line def convert_to_unicode(self, text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(self, vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() fin = open(vocab_file) for num, line in enumerate(fin): items = self.convert_to_unicode(line.strip()).split("\t") if len(items) > 2: break token = items[0] index = items[1] if len(items) == 2 else num token = token.strip() vocab[token] = int(index) return vocab def random_pair_neg_samples(self, pos_samples): """ randomly generate negtive samples using pos_samples Args: pos_samples: list of positive samples Returns: neg_samples: list of negtive samples """ np.random.shuffle(pos_samples) num_sample = len(pos_samples) neg_samples = [] miss_num = 0 def split_sent(sample, max_len, sep_id): token_seq, type_seq, pos_seq, label, seg_labels = sample sep_index = token_seq.index(sep_id) left_len = sep_index - 1 if left_len <= max_len: return (token_seq[1:sep_index], seg_labels[1:sep_index]) else: return [ token_seq[sep_index + 1:-1], seg_labels[sep_index + 1:-1] ] for i in range(num_sample): pair_index = (i + 1) % num_sample left_tokens, left_seg_labels = split_sent( pos_samples[i], (self.max_seq_len - 3) // 2, self.sep_id) right_tokens, right_seg_labels = split_sent( pos_samples[pair_index], self.max_seq_len - 3 - len(left_tokens), self.sep_id) token_seq = [self.cls_id] + left_tokens + [self.sep_id] + \ right_tokens + [self.sep_id] if len(token_seq) > self.max_seq_len: miss_num += 1 continue type_seq = [0] * (len(left_tokens) + 2) + [1] * (len(right_tokens) + 1) pos_seq = range(len(token_seq)) seg_label_seq = [-1] + left_seg_labels + [-1] + right_seg_labels + [ -1 ] assert len(token_seq) == len(type_seq) == len(pos_seq) == len(seg_label_seq), \ "[ERROR]len(src_id) == lne(sent_id) == len(pos_id) must be True" neg_samples.append([token_seq, type_seq, pos_seq, 0, seg_label_seq]) return neg_samples, miss_num def mixin_negtive_samples(self, pos_sample_generator, buffer=1000): """ 1. generate negtive samples by randomly group sentence_1 and sentence_2 of positive samples 2. combine negtive samples and positive samples Args: pos_sample_generator: a generator producing a parsed positive sample, which is a list: [token_ids, sent_ids, pos_ids, 1] Returns: sample: one sample from shuffled positive samples and negtive samples """ pos_samples = [] num_total_miss = 0 pos_sample_num = 0 try: while True: while len(pos_samples) < buffer: pos_sample = next(pos_sample_generator) label = pos_sample[3] assert label == 1, "positive sample's label must be 1" pos_samples.append(pos_sample) pos_sample_num += 1 neg_samples, miss_num = self.random_pair_neg_samples( pos_samples) num_total_miss += miss_num samples = pos_samples + neg_samples pos_samples = [] np.random.shuffle(samples) for sample in samples: yield sample except StopIteration: print("stopiteration: reach end of file") if len(pos_samples) == 1: yield pos_samples[0] elif len(pos_samples) == 0: yield None else: neg_samples, miss_num = self.random_pair_neg_samples( pos_samples) num_total_miss += miss_num samples = pos_samples + neg_samples pos_samples = [] np.random.shuffle(samples) for sample in samples: yield sample print("miss_num:%d\tideal_total_sample_num:%d\tmiss_rate:%f" % (num_total_miss, pos_sample_num * 2, num_total_miss / (pos_sample_num * 2))) def shuffle_samples(self, sample_generator, buffer=1000): samples = [] try: while True: while len(samples) < buffer: sample = next(sample_generator) samples.append(sample) np.random.shuffle(samples) for sample in samples: yield sample samples = [] except StopIteration: print("stopiteration: reach end of file") if len(samples) == 0: yield None else: np.random.shuffle(samples) for sample in samples: yield sample def data_generator(self): """ data_generator """ def wrapper(): def reader(): for epoch in range(self.epoch): self.current_epoch = epoch + 1 files = self.files #during training, data are sliced by trainers if self.shuffle_files: start = epoch * self.total_file end = start + self.total_file files = [file_ for index, file_ in enumerate(self.files[start:end]) \ if index % self.trainer_nums == self.trainer_id] for index, file_ in enumerate(files): file_, mask_word_prob = file_.strip().split("\t") mask_word = (np.random.random() < float(mask_word_prob)) self.current_file_index = (index + 1) * self.trainer_nums self.current_file = file_ if mask_word: self.mask_type = "mask_word" else: self.mask_type = "mask_char" sample_generator = self.read_file(file_) if not self.is_test: if self.generate_neg_sample: sample_generator = self.mixin_negtive_samples( sample_generator) else: #shuffle buffered sample sample_generator = self.shuffle_samples( sample_generator) for sample in sample_generator: if sample is None: continue sample.append(mask_word) yield sample def batch_reader(reader, batch_size): batch, total_token_num, max_len = [], 0, 0 for parsed_line in reader(): token_ids, sent_ids, pos_ids, label, seg_labels, mask_word = parsed_line max_len = max(max_len, len(token_ids)) if self.in_tokens: to_append = (len(batch) + 1) * max_len <= batch_size else: to_append = len(batch) < batch_size if to_append: batch.append(parsed_line) total_token_num += len(token_ids) else: yield batch, total_token_num batch, total_token_num, max_len = [parsed_line], len( token_ids), len(token_ids) if len(batch) > 0: yield batch, total_token_num for batch_data, total_token_num in batch_reader(reader, self.batch_size): yield prepare_batch_data( batch_data, total_token_num, voc_size=self.voc_size, pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=self.mask_id, return_input_mask=True, return_max_len=False, return_num_token=False) return wrapper if __name__ == "__main__": pass