# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import six import ast import copy import numpy as np import paddle.fluid as fluid def cast_fp32_to_fp16(exe, main_program): print("Cast parameters to float16 data format.") for param in main_program.global_block().all_parameters(): if not param.name.endswith(".master"): #load fp16 param_t = fluid.global_scope().find_var(param.name).get_tensor() data = np.array(param_t) if param.name.startswith("encoder_layer") \ and "layer_norm" not in param.name: print(param.name) param_t.set(np.float16(data).view(np.uint16), exe.place) #load fp32 master_param_var = fluid.global_scope().find_var(param.name + ".master") if master_param_var is not None: master_param_var.get_tensor().set(data, exe.place) def init_checkpoint(exe, init_checkpoint_path, main_program, use_fp16=False): assert os.path.exists( init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path def existed_persitables(var): if not fluid.io.is_persistable(var): return False return os.path.exists(os.path.join(init_checkpoint_path, var.name)) fluid.io.load_vars( exe, init_checkpoint_path, main_program=main_program, predicate=existed_persitables) print("Load model from {}".format(init_checkpoint_path)) if use_fp16: cast_fp32_to_fp16(exe, main_program) def init_pretraining_params(exe, pretraining_params_path, main_program, use_fp16=False): assert os.path.exists(pretraining_params_path ), "[%s] cann't be found." % pretraining_params_path def existed_params(var): if not isinstance(var, fluid.framework.Parameter): return False return os.path.exists(os.path.join(pretraining_params_path, var.name)) fluid.io.load_vars( exe, pretraining_params_path, main_program=main_program, predicate=existed_params) print("Load pretraining parameters from {}.".format( pretraining_params_path)) if use_fp16: cast_fp32_to_fp16(exe, main_program) def init_model(args, exe, startup_prog): init_func, init_path = None, None if args.do_train: if args.init_checkpoint and args.init_pretraining_params: print( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: init_func = init_checkpoint init_path = args.init_checkpoint elif args.init_pretraining_params: init_func = init_pretraining_params init_path = args.init_pretraining_params elif args.do_val or args.do_test or args.do_pred: init_path = args.init_checkpoint or args.init_pretraining_params if not init_path: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_func = init_checkpoint if init_path: init_func(exe, init_path, main_program=startup_prog, use_fp16=args.use_fp16)