# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import multiprocessing import paddle.fluid as fluid import reader.task_reader as task_reader from model.ernie import ErnieConfig from finetune.classifier import create_model, evaluate from optimization import optimization from utils.args import print_arguments, check_cuda from utils.init import init_pretraining_params, init_checkpoint from finetune_args import parser args = parser.parse_args() def main(args): ernie_config = ErnieConfig(args.ernie_config_path) ernie_config.print_config() if args.use_cuda: place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) exe = fluid.Executor(place) reader = task_reader.ClassifyReader( vocab_path=args.vocab_path, label_map_config=args.label_map_config, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case, in_tokens=args.in_tokens, random_seed=args.random_seed) if not (args.do_train or args.do_val or args.do_test): raise ValueError("For args `do_train`, `do_val` and `do_test`, at " "least one of them must be True.") startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: train_data_generator = reader.data_generator( input_file=args.train_set, batch_size=args.batch_size, epoch=args.epoch, shuffle=True, phase="train") num_train_examples = reader.get_num_examples(args.train_set) if args.in_tokens: max_train_steps = args.epoch * num_train_examples // ( args.batch_size // args.max_seq_len) // dev_count else: max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) print("Device count: %d" % dev_count) print("Num train examples: %d" % num_train_examples) print("Max train steps: %d" % max_train_steps) print("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_pyreader, graph_vars = create_model( args, pyreader_name='train_reader', ernie_config=ernie_config) scheduled_lr = optimization( loss=graph_vars["loss"], warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, loss_scaling=args.loss_scaling) fluid.memory_optimize( input_program=train_program, skip_opt_set=[ graph_vars["loss"].name, graph_vars["probs"].name, graph_vars["accuracy"].name, graph_vars["num_seqs"].name, ]) if args.verbose: if args.in_tokens: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size // args.max_seq_len) else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) print("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_pyreader, graph_vars = create_model( args, pyreader_name='test_reader', ernie_config=ernie_config) test_prog = test_prog.clone(for_test=True) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: print( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: init_checkpoint( exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) elif args.init_pretraining_params: init_pretraining_params( exe, args.init_pretraining_params, main_program=startup_prog, use_fp16=args.use_fp16) elif args.do_val or args.do_test: if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_checkpoint( exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) if args.do_train: exec_strategy = fluid.ExecutionStrategy() if args.use_fast_executor: exec_strategy.use_experimental_executor = True exec_strategy.num_threads = dev_count exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope train_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, loss_name=graph_vars["loss"].name, exec_strategy=exec_strategy, main_program=train_program) train_pyreader.decorate_tensor_provider(train_data_generator) else: train_exe = None if args.do_train: train_pyreader.start() steps = 0 if warmup_steps > 0: graph_vars["learning_rate"] = scheduled_lr time_begin = time.time() while True: try: steps += 1 if steps % args.skip_steps != 0: train_exe.run(fetch_list=[]) else: outputs = evaluate(train_exe, train_program, train_pyreader, graph_vars, "train") if args.verbose: verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size( ) verbose += "learning rate: %f" % ( outputs["learning_rate"] if warmup_steps > 0 else args.learning_rate) print(verbose) current_example, current_epoch = reader.get_train_progress() time_end = time.time() used_time = time_end - time_begin print("epoch: %d, progress: %d/%d, step: %d, ave loss: %f, " "ave acc: %f, speed: %f steps/s" % (current_epoch, current_example, num_train_examples, steps, outputs["loss"], outputs["accuracy"], args.skip_steps / used_time)) time_begin = time.time() if steps % args.save_steps == 0: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) if steps % args.validation_steps == 0: # evaluate dev set if args.do_val: test_pyreader.decorate_tensor_provider( reader.data_generator( args.dev_set, batch_size=args.batch_size, epoch=1, shuffle=False)) evaluate(exe, test_prog, test_pyreader, graph_vars, "dev") # evaluate test set if args.do_test: test_pyreader.decorate_tensor_provider( reader.data_generator( args.test_set, batch_size=args.batch_size, epoch=1, shuffle=False)) evaluate(exe, test_prog, test_pyreader, graph_vars, "test") except fluid.core.EOFException: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) train_pyreader.reset() break # final eval on dev set if args.do_val: test_pyreader.decorate_tensor_provider( reader.data_generator( args.dev_set, batch_size=args.batch_size, epoch=1, shuffle=False)) print("Final validation result:") evaluate(exe, test_prog, test_pyreader, graph_vars, "dev") # final eval on test set if args.do_test: test_pyreader.decorate_tensor_provider( reader.data_generator( args.test_set, batch_size=args.batch_size, epoch=1, shuffle=False)) print("Final test result:") evaluate(exe, test_prog, test_pyreader, graph_vars, "test") if __name__ == '__main__': print_arguments(args) check_cuda(args.use_cuda) main(args)