# originally based on https://github.com/tensorflow/models/tree/master/lm_1b import glob import random import numpy as np import io import six class Vocabulary(object): ''' A token vocabulary. Holds a map from token to ids and provides a method for encoding text to a sequence of ids. ''' def __init__(self, filename, validate_file=False): ''' filename = the vocabulary file. It is a flat text file with one (normalized) token per line. In addition, the file should also contain the special tokens , , (case sensitive). ''' self._id_to_word = [] self._word_to_id = {} self._unk = -1 self._bos = -1 self._eos = -1 with io.open(filename, 'r', encoding='utf-8') as f: idx = 0 for line in f: word_name = line.strip() if word_name == '': self._bos = idx elif word_name == '': self._eos = idx elif word_name == '': self._unk = idx if word_name == '!!!MAXTERMID': continue self._id_to_word.append(word_name) self._word_to_id[word_name] = idx idx += 1 # check to ensure file has special tokens if validate_file: if self._bos == -1 or self._eos == -1 or self._unk == -1: raise ValueError("Ensure the vocabulary file has " ", , tokens") @property def bos(self): return self._bos @property def eos(self): return self._eos @property def unk(self): return self._unk @property def size(self): return len(self._id_to_word) def word_to_id(self, word): if word in self._word_to_id: return self._word_to_id[word] return self.unk def id_to_word(self, cur_id): return self._id_to_word[cur_id] def decode(self, cur_ids): """Convert a list of ids to a sentence, with space inserted.""" return ' '.join([self.id_to_word(cur_id) for cur_id in cur_ids]) def encode(self, sentence, reverse=False, split=True): """Convert a sentence to a list of ids, with special tokens added. Sentence is a single string with tokens separated by whitespace. If reverse, then the sentence is assumed to be reversed, and this method will swap the BOS/EOS tokens appropriately.""" if split: word_ids = [ self.word_to_id(cur_word) for cur_word in sentence.split() ] else: word_ids = [self.word_to_id(cur_word) for cur_word in sentence] if reverse: return np.array([self.eos] + word_ids + [self.bos], dtype=np.int32) else: return np.array([self.bos] + word_ids + [self.eos], dtype=np.int32) class UnicodeCharsVocabulary(Vocabulary): """Vocabulary containing character-level and word level information. Has a word vocabulary that is used to lookup word ids and a character id that is used to map words to arrays of character ids. The character ids are defined by ord(c) for c in word.encode('utf-8') This limits the total number of possible char ids to 256. To this we add 5 additional special ids: begin sentence, end sentence, begin word, end word and padding. WARNING: for prediction, we add +1 to the output ids from this class to create a special padding id (=0). As a result, we suggest you use the `Batcher`, `TokenBatcher`, and `LMDataset` classes instead of this lower level class. If you are using this lower level class, then be sure to add the +1 appropriately, otherwise embeddings computed from the pre-trained model will be useless. """ def __init__(self, filename, max_word_length, **kwargs): super(UnicodeCharsVocabulary, self).__init__(filename, **kwargs) self._max_word_length = max_word_length # char ids 0-255 come from utf-8 encoding bytes # assign 256-300 to special chars self.bos_char = 256 # self.eos_char = 257 # self.bow_char = 258 # self.eow_char = 259 # self.pad_char = 260 # num_words = len(self._id_to_word) self._word_char_ids = np.zeros( [num_words, max_word_length], dtype=np.int32) # the charcter representation of the begin/end of sentence characters def _make_bos_eos(c): r = np.zeros([self.max_word_length], dtype=np.int32) r[:] = self.pad_char r[0] = self.bow_char r[1] = c r[2] = self.eow_char return r self.bos_chars = _make_bos_eos(self.bos_char) self.eos_chars = _make_bos_eos(self.eos_char) for i, word in enumerate(self._id_to_word): self._word_char_ids[i] = self._convert_word_to_char_ids(word) self._word_char_ids[self.bos] = self.bos_chars self._word_char_ids[self.eos] = self.eos_chars @property def word_char_ids(self): return self._word_char_ids @property def max_word_length(self): return self._max_word_length def _convert_word_to_char_ids(self, word): code = np.zeros([self.max_word_length], dtype=np.int32) code[:] = self.pad_char word_encoded = word.encode('utf-8', 'ignore')[:(self.max_word_length - 2)] code[0] = self.bow_char for k, chr_id in enumerate(word_encoded, start=1): code[k] = ord(chr_id) code[k + 1] = self.eow_char return code def word_to_char_ids(self, word): if word in self._word_to_id: return self._word_char_ids[self._word_to_id[word]] else: return self._convert_word_to_char_ids(word) def encode_chars(self, sentence, reverse=False, split=True): ''' Encode the sentence as a white space delimited string of tokens. ''' if split: chars_ids = [ self.word_to_char_ids(cur_word) for cur_word in sentence.split() ] else: chars_ids = [ self.word_to_char_ids(cur_word) for cur_word in sentence ] if reverse: return np.vstack([self.eos_chars] + chars_ids + [self.bos_chars]) else: return np.vstack([self.bos_chars] + chars_ids + [self.eos_chars]) class Batcher(object): ''' Batch sentences of tokenized text into character id matrices. ''' # def __init__(self, lm_vocab_file: str, max_token_length: int): def __init__(self, lm_vocab_file, max_token_length): ''' lm_vocab_file = the language model vocabulary file (one line per token) max_token_length = the maximum number of characters in each token ''' max_token_length = int(max_token_length) self._lm_vocab = UnicodeCharsVocabulary(lm_vocab_file, max_token_length) self._max_token_length = max_token_length # def batch_sentences(self, sentences: List[List[str]]): def batch_sentences(self, sentences): ''' Batch the sentences as character ids Each sentence is a list of tokens without or , e.g. [['The', 'first', 'sentence', '.'], ['Second', '.']] ''' n_sentences = len(sentences) max_length = max(len(sentence) for sentence in sentences) + 2 X_char_ids = np.zeros( (n_sentences, max_length, self._max_token_length), dtype=np.int64) for k, sent in enumerate(sentences): length = len(sent) + 2 char_ids_without_mask = self._lm_vocab.encode_chars( sent, split=False) # add one so that 0 is the mask value X_char_ids[k, :length, :] = char_ids_without_mask + 1 return X_char_ids class TokenBatcher(object): ''' Batch sentences of tokenized text into token id matrices. ''' def __init__(self, lm_vocab_file): # def __init__(self, lm_vocab_file: str): ''' lm_vocab_file = the language model vocabulary file (one line per token) ''' self._lm_vocab = Vocabulary(lm_vocab_file) # def batch_sentences(self, sentences: List[List[str]]): def batch_sentences(self, sentences): ''' Batch the sentences as character ids Each sentence is a list of tokens without or , e.g. [['The', 'first', 'sentence', '.'], ['Second', '.']] ''' n_sentences = len(sentences) max_length = max(len(sentence) for sentence in sentences) + 2 X_ids = np.zeros((n_sentences, max_length), dtype=np.int64) for k, sent in enumerate(sentences): length = len(sent) + 2 ids_without_mask = self._lm_vocab.encode(sent, split=False) # add one so that 0 is the mask value X_ids[k, :length] = ids_without_mask + 1 return X_ids ##### for training def _get_batch(generator, batch_size, num_steps, max_word_length): """Read batches of input.""" cur_stream = [None] * batch_size no_more_data = False while True: inputs = np.zeros([batch_size, num_steps], np.int32) if max_word_length is not None: char_inputs = np.zeros([batch_size, num_steps, max_word_length], np.int32) else: char_inputs = None targets = np.zeros([batch_size, num_steps], np.int32) for i in range(batch_size): cur_pos = 0 while cur_pos < num_steps: if cur_stream[i] is None or len(cur_stream[i][0]) <= 1: try: cur_stream[i] = list(next(generator)) except StopIteration: # No more data, exhaust current streams and quit no_more_data = True break how_many = min(len(cur_stream[i][0]) - 1, num_steps - cur_pos) next_pos = cur_pos + how_many inputs[i, cur_pos:next_pos] = cur_stream[i][0][:how_many] if max_word_length is not None: char_inputs[i, cur_pos:next_pos] = cur_stream[i][ 1][:how_many] targets[i, cur_pos:next_pos] = cur_stream[i][0][1:how_many + 1] cur_pos = next_pos cur_stream[i][0] = cur_stream[i][0][how_many:] if max_word_length is not None: cur_stream[i][1] = cur_stream[i][1][how_many:] if no_more_data: # There is no more data. Note: this will not return data # for the incomplete batch break X = { 'token_ids': inputs, 'tokens_characters': char_inputs, 'next_token_id': targets } yield X class LMDataset(object): """ Hold a language model dataset. A dataset is a list of tokenized files. Each file contains one sentence per line. Each sentence is pre-tokenized and white space joined. """ def __init__(self, filepattern, vocab, reverse=False, test=False, shuffle_on_load=False): ''' filepattern = a glob string that specifies the list of files. vocab = an instance of Vocabulary or UnicodeCharsVocabulary reverse = if True, then iterate over tokens in each sentence in reverse test = if True, then iterate through all data once then stop. Otherwise, iterate forever. shuffle_on_load = if True, then shuffle the sentences after loading. ''' self._vocab = vocab self._all_shards = glob.glob(filepattern) print('Found %d shards at %s' % (len(self._all_shards), filepattern)) if test: self._all_shards = list(np.random.choice(self._all_shards, size=4)) print('sampled %d shards at %s' % (len(self._all_shards), filepattern)) self._shards_to_choose = [] self._reverse = reverse self._test = test self._shuffle_on_load = shuffle_on_load self._use_char_inputs = hasattr(vocab, 'encode_chars') self._ids = self._load_random_shard() def _choose_random_shard(self): if len(self._shards_to_choose) == 0: self._shards_to_choose = list(self._all_shards) random.shuffle(self._shards_to_choose) shard_name = self._shards_to_choose.pop() return shard_name def _load_random_shard(self): """Randomly select a file and read it.""" if self._test: if len(self._all_shards) == 0: # we've loaded all the data # this will propogate up to the generator in get_batch # and stop iterating raise StopIteration else: shard_name = self._all_shards.pop() else: # just pick a random shard shard_name = self._choose_random_shard() ids = self._load_shard(shard_name) self._i = 0 self._nids = len(ids) return ids def _load_shard(self, shard_name): """Read one file and convert to ids. Args: shard_name: file path. Returns: list of (id, char_id) tuples. """ print('Loading data from: %s' % shard_name) with io.open(shard_name, 'r', encoding='utf-8') as f: sentences_raw = f.readlines() if self._reverse: sentences = [] for sentence in sentences_raw: splitted = sentence.split() splitted.reverse() sentences.append(' '.join(splitted)) else: sentences = sentences_raw if self._shuffle_on_load: print('shuffle sentences') random.shuffle(sentences) ids = [ self.vocab.encode(sentence, self._reverse) for sentence in sentences ] if self._use_char_inputs: chars_ids = [ self.vocab.encode_chars(sentence, self._reverse) for sentence in sentences ] else: chars_ids = [None] * len(ids) print('Loaded %d sentences.' % len(ids)) print('Finished loading') return list(zip(ids, chars_ids)) def get_sentence(self): while True: if self._i == self._nids: self._ids = self._load_random_shard() ret = self._ids[self._i] self._i += 1 yield ret @property def max_word_length(self): if self._use_char_inputs: return self._vocab.max_word_length else: return None def iter_batches(self, batch_size, num_steps): for X in _get_batch(self.get_sentence(), batch_size, num_steps, self.max_word_length): # token_ids = (batch_size, num_steps) # char_inputs = (batch_size, num_steps, 50) of character ids # targets = word ID of next word (batch_size, num_steps) yield X @property def vocab(self): return self._vocab class BidirectionalLMDataset(object): def __init__(self, filepattern, vocab, test=False, shuffle_on_load=False): ''' bidirectional version of LMDataset ''' self._data_forward = LMDataset( filepattern, vocab, reverse=False, test=test, shuffle_on_load=shuffle_on_load) self._data_reverse = LMDataset( filepattern, vocab, reverse=True, test=test, shuffle_on_load=shuffle_on_load) def iter_batches(self, batch_size, num_steps): max_word_length = self._data_forward.max_word_length for X, Xr in six.moves.zip( _get_batch(self._data_forward.get_sentence(), batch_size, num_steps, max_word_length), _get_batch(self._data_reverse.get_sentence(), batch_size, num_steps, max_word_length)): for k, v in Xr.items(): X[k + '_reverse'] = v yield X class InvalidNumberOfCharacters(Exception): pass