# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VQA Data Reader implementation """ from __future__ import print_function from __future__ import division import os import base64 import functools import numpy as np import types import gzip import logging import re import six import collections import random import paddle import paddle.fluid as fluid from batching.finetune_batching import prepare_vqa_batch_data from preprocess import preprocessor class VQADataReader(object): """ data reader task for vqa """ def __init__(self, task_group, split, vocab_path, batch_size=4096, num_class=3129, max_seq_len=512, shuffle_files=True, epoch=100, voc_size=0, cls_size=0, is_test=False): self.vocab = self.load_vocab(vocab_path) self.task_group = task_group self.processor = getattr(preprocessor, task_group[0]["Proprocessor"])( tokenizer_name =self.task_group[0]["tokenizer_name"], vocab_path = vocab_path) self.batch_size = batch_size self.shuffle_files = shuffle_files self.epoch = epoch self.current_epoch = 0 self.current_file_index = 0 self.total_file = 0 self.num_class=num_class self.current_file = None self.voc_size = voc_size self.cls_size = cls_size self.max_seq_len = max_seq_len self.pad_id = self.vocab["[PAD]"] self.cls_id = self.vocab["[CLS]"] self.sep_id = self.vocab["[SEP]"] self.mask_id = self.vocab["[MASK]"] self.is_test = is_test self.split = split if self.is_test: self.epoch = 1 self.shuffle_files = False self.vg_init_epochs = 0 else: self.vg_init_epochs = int(self.task_group[0]["vg_init_epochs"]) def get_progress(self): """ return current progress of traning data """ self.progress_dict = {"current_epoch": self.current_epoch, "current_file_index": self.current_file_index, "total_file": self.total_file, "current_file": self.current_file } return self.progress_dict def process_vl(self, line, max_seq_len): """ trans the orgin tokens to the wanted tokens """ def decode_feature(base64_str, size): """ decode feature from base64 """ fea_base64 = base64.b64decode(base64_str) fea_decode = np.frombuffer(fea_base64, dtype=np.float32) shape = size, int(fea_decode.shape[0] / size) features = np.resize(fea_decode, shape) return features question_id, text, match_label, score, image_w, image_h, number_box, \ image_loc, image_embeddings = line token_ids = [] raw_ids = self.processor.convert_sentence_to_ids_without_cls(text) token_ids.append(self.vocab["[CLS]"]) token_ids.extend(raw_ids) token_ids.append(self.vocab["[SEP]"]) sent_ids = [0] * len(token_ids) pos_ids = range(0, len(token_ids)) token_ids = [int(token) for token in token_ids] sent_ids = [int(token) for token in sent_ids] pos_ids = [int(token) for token in pos_ids] if len(token_ids) > self.max_seq_len: token_ids = token_ids[0: self.max_seq_len - 1] + [token_ids[-1]] sent_ids = sent_ids[0: self.max_seq_len - 1] + [sent_ids[-1]] pos_ids = pos_ids[0: self.max_seq_len] labels = [int(label_tok) for label_tok in match_label.split("|")] scores = [float(score_tok) for score_tok in score.split("|")] number_box = int(number_box) question_id = int(question_id) image_loc = decode_feature(image_loc, number_box) shape_np = np.repeat(np.array(\ [[float(image_w), float(image_h), float(image_w), float(image_h)]]), number_box, axis=0) boxes_np = image_loc / shape_np area = (boxes_np[:, 3] - boxes_np[:, 1]) * (boxes_np[:, 2] - boxes_np[:, 0]) image_loc = np.concatenate((boxes_np, np.expand_dims(area, 1)), axis = 1) loc_cls = np.array([[0.0, 0.0, 1.0, 1.0, 1.0]], dtype = "float32") image_loc = np.concatenate([loc_cls, image_loc], 0) try: image_embeddings = decode_feature(image_embeddings, number_box) image_embeddings_cls = np.mean(image_embeddings, axis = 0, keepdims = True) image_embeddings = np.concatenate([image_embeddings_cls, image_embeddings], 0) self.default_image_emb = image_embeddings except: print("error data occur, a random default image emb will be assin to this one") print("the wrong line occur") image_embeddings = self.default_image_emb weight_labels = self.get_weight_label(self.num_class, labels, scores) sample_json = { "question_id": question_id, "token_ids": token_ids, "sent_ids": sent_ids, "pos_ids": pos_ids, "weight_labels": weight_labels, "image_loc": image_loc, "image_embeddings": image_embeddings, } return sample_json def get_weight_label(self, num_class, labels, scores): """assign the corresponding score for the labels Input: labels (Indefinite length list, like [1, 2, 3]) scores (Indefinite length list, like [0.1, 0.2, 0.3]) Output: weight_score (list, length equals num_class) """ assert len(labels) == len(scores), \ "unequals length with labels has %d number(s) while scores has %d number(s)!" % (len(labels), len(scores)) weight_score = [0] * num_class for i in range(len(labels)): weight_score[labels[i]] = scores[i] return weight_score def parse_line(self, line, max_seq_len=512, task_index=None): """ parse one line to token_ids, sentence_ids, pos_ids, label """ line = line.strip().split("\t") sample_json = self.process_vl(line, max_seq_len) return sample_json def read_file(self, file, task_index): """ read line data from a file """ with open(file, "rb") as f: lines = f.readlines() if not self.is_test: np.random.shuffle(lines) for line in lines: yield line def convert_to_unicode(self, text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(self, vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() fin = open(vocab_file) for num, line in enumerate(fin): items = self.convert_to_unicode(line.strip()).split("\t") if len(items) > 2: break token = items[0] index = items[1] if len(items) == 2 else num token = token.strip() vocab[token] = int(index) return vocab def data_generator(self): """ data_generator """ filelist_key = "train_filelist" if self.is_test: if self.split == "val": filelist_key = "val_filelist" elif self.split == "test_dev": filelist_key = "test_dev_filelist" elif self.split == "test_std": filelist_key = "test_std_filelist" else: print("*************no split named as :", self.split, "********************") return None all_files = [] task_probs = [] sum = 0.0 for task in self.task_group: all_files.append(open(task[filelist_key]).readlines()) task_probs.append(task["prob"]) sum += task["prob"] for i in xrange(len(task_probs)): task_probs[i] = task_probs[i] / sum task_probs = np.array(task_probs).ravel() def wrapper(): """ warpper """ def reader(task_index): """ reader """ files = all_files[task_index] global_rng = np.random.RandomState(0) for epoch in range(self.epoch): if epoch < self.vg_init_epochs: files = open(task["vg_train_filelist"]).readlines() + all_files[task_index] if self.shuffle_files: global_rng.shuffle(files) for index, file in enumerate(files): file = file.strip() trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) try: trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM")) except: print("can not get env PADDLE_TRAINERS_NUM, set trainer_nums to 1") trainers_num = 1 if index % trainers_num != trainer_id: continue sample_generator = paddle.reader.xmap_readers(self.parse_line, \ functools.partial(self.read_file, file=file, task_index=task_index), 4, 200) for sample in sample_generator(): self.current_epoch = epoch + 1 self.current_file_index = index + 1 self.current_file = file self.total_file = len(files) if sample is None: continue yield sample def batch_reader(reader, batch_size): """ Batch data reader """ batch, total_token_num, max_len = [], 0, 0 cur_size = 0 dev_count = 1 buff = [] readers = [] for i in xrange(len(task_probs)): buff.append(None) readers.append(reader(i)) task_indices = range(len(task_probs)) end_times = 0 while end_times < 50: task_index = np.random.choice(task_indices, p=task_probs) dev_num = 0 cur_reader = readers[task_index] while dev_num < dev_count: if buff[task_index] is not None: cur_len = len(buff[task_index]["token_ids"]) max_len = max(max_len, cur_len) batch.append(buff[task_index]) total_token_num += cur_len buff[task_index] = None cur_size += 1 parsed_line = next(cur_reader, None) if parsed_line is None: end_times += 1 dev_num += 1 if len(batch) > 0: yield batch, total_token_num, task_index batch, total_token_num, max_len = [], 0, 0 continue end_times = 0 cur_len = len(parsed_line["token_ids"]) max_len = max(max_len, cur_len) if cur_size >= batch_size: yield batch, total_token_num, task_index batch, total_token_num, max_len = [], 0, 0 cur_size = 0 dev_num += 1 buff[task_index] = parsed_line else: batch.append(parsed_line) cur_size += 1 total_token_num += cur_len for batch_data, total_token_num, task_index in batch_reader(reader, self.batch_size): yield prepare_vqa_batch_data( batch_data, total_token_num, task_index, len(self.task_group), voc_size=self.voc_size, pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=self.mask_id, return_input_mask=True, return_max_len=False, return_num_token=False) return wrapper if __name__ == "__main__": pass