# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RefcocoPlus DataReader implementation """ from __future__ import print_function from __future__ import division import os import base64 import numpy as np import types import gzip import logging import re import six import collections import random import paddle import paddle.fluid as fluid from batching.finetune_batching import prepare_refcoco_plus_batch_data from preprocess import preprocessor class RefcocoPlusDataReader(object): """ data reader task for refcoco plus """ def __init__(self, task_group, split, vocab_path, batch_size=4096, max_seq_len=512, shuffle_files=True, epoch=100, voc_size=0, is_test=False): self.vocab = self.load_vocab(vocab_path) self.task_group = task_group self.processor = getattr(preprocessor, task_group[0]["Proprocessor"])( tokenizer_name =self.task_group[0]["tokenizer_name"], vocab_path = vocab_path) self.batch_size = batch_size self.shuffle_files = shuffle_files self.epoch = epoch self.split = split self.current_epoch = 0 self.current_file_index = 0 self.total_file = 0 self.current_file = None self.voc_size = voc_size self.max_seq_len = max_seq_len self.pad_id = self.vocab["[PAD]"] self.cls_id = self.vocab["[CLS]"] self.sep_id = self.vocab["[SEP]"] self.mask_id = self.vocab["[MASK]"] self.input_slots = 9 self.is_test = is_test if is_test: self.epoch = 1 self.shuffle_files = False def get_progress(self): """ return current progress of traning data """ self.progress_dict = {"current_epoch": self.current_epoch, "current_file_index": self.current_file_index, "total_file": self.total_file, "current_file": self.current_file } return self.progress_dict def process_vl(self, line, max_seq_len): """ process single v+l data """ def decode_feature(base64_str, size): """ decode feature from base64 """ fea_base64 = base64.b64decode(base64_str) fea_decode = np.frombuffer(fea_base64, dtype=np.float32) shape = size, int(fea_decode.shape[0] / size) features = np.resize(fea_decode, shape) return features text, image_w, image_h, number_boxes, number_boxes_gl, image_loc, \ image_embeddings, box_label, label = line token_ids = [] raw_ids = self.processor.convert_sentence_to_ids_without_cls(text) token_ids.append(self.vocab["[CLS]"]) token_ids.extend(raw_ids) token_ids.append(self.vocab["[SEP]"]) sent_ids = [0] * len(token_ids) pos_ids = range(0, len(token_ids)) #print("sent_ids:", sent_ids) token_ids = [int(token) for token in token_ids] sent_ids = [int(token) for token in sent_ids] pos_ids = [int(token) for token in pos_ids] assert len(token_ids) == len(sent_ids) == len(pos_ids), \ "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids)" if len(token_ids) > self.max_seq_len: token_ids = token_ids[0: self.max_seq_len - 1] + [token_ids[-1]] sent_ids = sent_ids[0: self.max_seq_len - 1] + [sent_ids[-1]] pos_ids = pos_ids[0: self.max_seq_len] all_number_box = int(number_boxes) + int(number_boxes_gl) image_loc = decode_feature(image_loc, all_number_box) shape_np = np.repeat(np.array(\ [[float(image_w), float(image_h), float(image_w), float(image_h)]]), all_number_box, axis=0) boxes_np = image_loc / shape_np area = (boxes_np[:, 3] - boxes_np[:, 1]) * (boxes_np[:, 2] - boxes_np[:, 0]) image_loc = np.concatenate((boxes_np, np.expand_dims(area, 1)), axis = 1) loc_cls = np.array([[0.0, 0.0, 1.0, 1.0, 1.0]], dtype = "float32") image_loc = np.concatenate([loc_cls, image_loc], 0) image_embeddings = decode_feature(image_embeddings, all_number_box) image_embeddings_cls = np.mean(image_embeddings, axis = 0, keepdims = True) image_embeddings = np.concatenate([image_embeddings_cls, image_embeddings], 0) x1, y1, x2, y2 = [float(item) for item in box_label.split(" ")] cls_label = (x2 - x1 + 1) * (y2 - y1 + 1) /(float(image_w) * float(image_h)) score_th = 0.5 if cls_label < score_th: cls_label = 0.0 label_tmp = label.split(" ") if not self.is_test: for i in range(len(label_tmp)): if float(label_tmp[i]) < score_th: label_tmp[i] = 0.0 label = [[cls_label]] + [[float(token)] for token in label_tmp] label = np.array(label, dtype="float32") add_item = [all_number_box + 1, image_w, image_h] + [float(item) for item in box_label.split(" ")] sample_json = { "token_ids": token_ids, "sent_ids": sent_ids, "pos_ids": pos_ids, "label": label, "image_loc": image_loc, "image_embeddings": image_embeddings, "all_number_box": all_number_box, "add_item": add_item } return sample_json def parse_line(self, line, max_seq_len=512, task_index=None): """ parse one line to token_ids, sentence_ids, pos_ids, label """ line = line.strip().split("\t") assert len(line) == self.input_slots, "One sample must have %d fields!" % self.input_slots sample_json = self.process_vl(line, max_seq_len) token_ids = sample_json["token_ids"] return sample_json def read_file(self, file, task_index): """ read line data from a file """ try: assert file.endswith('.gz'), "[ERROR] %s is not a gzip file" % file with gzip.open(file, "rb") as f: lines = f.readlines() except: with open(file, "rb") as f: lines = f.readlines() if not self.is_test: np.random.shuffle(lines) for line in lines: parsed_line = self.parse_line( line, max_seq_len=self.max_seq_len, task_index=task_index) if parsed_line is None: continue yield parsed_line def convert_to_unicode(self, text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(self, vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() fin = open(vocab_file) for num, line in enumerate(fin): items = self.convert_to_unicode(line.strip()).split("\t") if len(items) > 2: break token = items[0] index = items[1] if len(items) == 2 else num token = token.strip() vocab[token] = int(index) return vocab def data_generator(self): """ data_generator """ if self.split == "train": filelist_key = "train_filelist" elif self.split == "val": filelist_key = "val_filelist" elif self.split == "testA": filelist_key = "testA_filelist" else: filelist_key = "testB_filelist" all_files = [] task_probs = [] sum = 0.0 for task in self.task_group: all_files.append(open(task[filelist_key]).readlines()) task_probs.append(task["prob"]) sum += task["prob"] for i in xrange(len(task_probs)): task_probs[i] = task_probs[i] / sum task_probs = np.array(task_probs).ravel() def wrapper(): """ wrapper """ def reader(task_index): """ reader """ files = all_files[task_index] for epoch in range(self.epoch): if self.shuffle_files: if epoch < 0: files = files + open(task["gt_train_filelist"]).readlines() np.random.shuffle(files) for index, file in enumerate(files): file = file.strip() sample_generator = self.read_file(file, task_index) for sample in sample_generator: self.current_epoch = epoch + 1 self.current_file_index = index + 1 self.current_file = file self.total_file = len(files) if sample is None: continue yield sample def batch_reader(reader, batch_size): """ batch reader """ batch, total_token_num, max_len = [], 0, 0 cur_size = 0 dev_count = 1 buff = [] readers = [] for i in xrange(len(task_probs)): buff.append(None) readers.append(reader(i)) task_indices = range(len(task_probs)) end_times = 0 while end_times < 50: task_index = np.random.choice(task_indices, p=task_probs) dev_num = 0 cur_reader = readers[task_index] while dev_num < dev_count: if buff[task_index] is not None: cur_len = len(buff[task_index]["token_ids"]) max_len = max(max_len, cur_len) batch.append(buff[task_index]) total_token_num += cur_len buff[task_index] = None cur_size += 1 parsed_line = next(cur_reader, None) if parsed_line is None: end_times += 1 dev_num += 1 if len(batch) > 0: yield batch, total_token_num, task_index batch, total_token_num, max_len = [], 0, 0 continue end_times = 0 cur_len = len(parsed_line["token_ids"]) max_len = max(max_len, cur_len) if cur_size >= batch_size: yield batch, total_token_num, task_index batch, total_token_num, max_len = [], 0, 0 cur_size = 0 dev_num += 1 buff[task_index] = parsed_line else: batch.append(parsed_line) cur_size += 1 total_token_num += cur_len for batch_data, total_token_num, task_index in batch_reader(reader, self.batch_size): yield prepare_refcoco_plus_batch_data( batch_data, total_token_num, task_index, len(self.task_group), voc_size=self.voc_size, pad_id=self.pad_id, return_input_mask=True, return_max_len=False, return_num_token=False) return wrapper if __name__ == "__main__": pass