# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optimization and learning rate scheduling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid from utils.fp16 import create_master_params_grads, master_param_to_train_param, apply_dynamic_loss_scaling def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps): """ Applies linear warmup of learning rate from 0 and decay to 0.""" with fluid.default_main_program()._lr_schedule_guard(): lr = fluid.layers.tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="scheduled_learning_rate") global_step = fluid.layers.learning_rate_scheduler._decay_step_counter() with fluid.layers.control_flow.Switch() as switch: with switch.case(global_step < warmup_steps): warmup_lr = learning_rate * (global_step / warmup_steps) fluid.layers.tensor.assign(warmup_lr, lr) with switch.default(): decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay( learning_rate=learning_rate, decay_steps=num_train_steps, end_learning_rate=0.0, power=1.0, cycle=False) fluid.layers.tensor.assign(decayed_lr, lr) return lr def optimization(loss, warmup_steps, num_train_steps, learning_rate, train_program, weight_decay, scheduler='linear_warmup_decay', use_fp16=False, use_dynamic_loss_scaling=False, init_loss_scaling=1.0, beta1=0.9, beta2=0.98, epsilon=1e-06, boundaries=None, values=None): """optimization funxtion""" def exclude_from_weight_decay(name): """exclude from weight decay""" name = name.rstrip('.master') if name.find("layer_norm") > -1: return True bias_suffix = ["_bias", "_b", ".b_0"] for suffix in bias_suffix: if name.endswith(suffix): return True return False if warmup_steps > 0: if scheduler == 'noam_decay': scheduled_lr = fluid.layers.learning_rate_scheduler \ .noam_decay(1 / (warmup_steps * (learning_rate ** 2)), warmup_steps) elif scheduler == 'linear_warmup_decay': scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps, num_train_steps) elif scheduler == 'scale_by_epoch_decay': if boundaries is None: boundaries = [10000, 20000] if values is None: values = [5e-6, 5e-7, 5e-8] scheduled_lr = fluid.layers.piecewise_decay(boundaries=boundaries, values=values) else: raise ValueError("Unkown learning rate scheduler, should be " "'noam_decay' or 'linear_warmup_decay'") optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr, beta1=beta1, beta2=beta2, epsilon=epsilon) else: scheduled_lr = fluid.layers.create_global_var( name=fluid.unique_name.generate("learning_rate"), shape=[1], value=learning_rate, dtype='float32', persistable=True) optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr, beta1=beta1, beta2=beta2, epsilon=epsilon) optimizer._learning_rate_map[fluid.default_main_program()] = scheduled_lr if use_fp16: optimizer = fluid.contrib.mixed_precision.decorator.decorate(optimizer, amp_lists=fluid.contrib.mixed_precision.AutoMixedPrecisionLists( custom_black_varnames={'loss'}, custom_black_list={'layer_norm', 'arg_max', 'argmax'}), init_loss_scaling=init_loss_scaling, use_dynamic_loss_scaling=use_dynamic_loss_scaling) loss_scaling = optimizer.get_loss_scaling() else: loss_scaling = None fluid.clip.set_gradient_clip( clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)) param_list = dict() for param in train_program.global_block().all_parameters(): param_list[param.name] = param * 1.0 param_list[param.name].stop_gradient = True _, param_grads = optimizer.minimize(loss) if weight_decay > 0: for param, grad in param_grads: if exclude_from_weight_decay(param.name): continue with param.block.program._optimized_guard( [param, grad]), fluid.framework.name_scope("weight_decay"): updated_param = param - param_list[ param.name] * weight_decay * scheduled_lr fluid.layers.assign(output=param, input=updated_param) return scheduled_lr, loss_scaling